236 research outputs found

    Resolution limits of pixellated optical components.

    Get PDF
    Pixellated optical components, for example generalised confocal lenslet arrays (GCLAs), enable the design of optical devices which cannot be realised without introducing pixellation or a similar compromise. A key concern is the degradation of imaging quality due to the combined effects of diffraction, worst for smaller pixels, and the visibility of the pixels. Here we examine the effects of these two factors on image quality through use of our custom raytracer, Dr TIM. We also outline future work in developing these ideas more rigorously and applying the conclusions to more complicated devices

    Parallel Retention of Pdx2 Genes in Cartilaginous Fish and Coelacanths

    Get PDF
    The Pdx1 or Ipf1 gene encodes an important homeodomain-containing protein with key roles in pancreas development and function. Mutations in human PDX1 are implicated in developmental defects and disease of the pancreas. Extensive research, including genome sequencing, has indicated that Pdx1 is the only member of its gene family in mammals, birds, amphibians, and ray-finned fish, and with the exception of teleost fish, this gene forms part of the ParaHox gene cluster along with Gsx1 and Cdx2. The ParaHox cluster, however, is a remnant of a 4-fold genome duplication; the three other ParaHox paralogues lack a Pdx-like gene in all vertebrate genomes examined to date. We have used bacterial artificial chromosome cloning and synteny analysis to show that the ancestor of living jawed vertebrates in fact had more ParaHox genes, including two Pdx genes (Pdx1 and Pdx2). Surprisingly, the two Pdx genes have been retained in parallel in two quite distantly related lineages, the cartilaginous fish (sharks, skates, and chimeras) and the Indonesian coelacanth, Latimeria menadoensis. The Pdx2 gene has been lost independently in ray-finned fish and in tetrapods

    When one phenotype is not enough: divergent evolutionary trajectories govern venom variation in a widespread rattlesnake species

    Get PDF
    Artículo 10 páginas, 3 figuras 1 tablaUnderstanding the origin and maintenance of phenotypic variation, particularly across a continuous spatial distribution, represents a key challenge in evolutionary biology. For this, animal venoms represent ideal study systems: they are complex, variable, yet easily quantifiable molecular phenotypes with a clear function. Rattlesnakes display tremendous variation in their venom composition, mostly through strongly dichotomous venom strategies, which may even coexist within a single species. Here, through dense, widespread population-level sampling of the Mojave rattlesnake, Crotalus scutulatus, we show that genomic structural variation at multiple loci underlies extreme geographical variation in venom composition, which is maintained despite extensive gene flow. Unexpectedly, neither diet composition nor neutral population structure explain venom variation. Instead, venom divergence is strongly correlated with environmental conditions. Individual toxin genes correlate with distinct environmental factors, suggesting that different selective pressures can act on individual loci independently of their co-expression patterns or genomic proximity. Our results challenge common assumptions about diet composition as the key selective driver of snake venom evolution and emphasize how the interplay between genomic architecture and local-scale spatial heterogeneity in selective pressures may facilitate the retention of adaptive functional polymorphisms across a continuous space.Funding: Leverhulme Trust Grant RPG 2013-315 to WW, Santander Early Career Research Scholarship to GZ, Ministerio de Economía y Competitividad Grant BFU2013-42833-P to JJC.Peer reviewe

    Cost-effectiveness of HBV and HCV screening strategies:a systematic review of existing modelling techniques

    Get PDF
    Introduction: Studies evaluating the cost-effectiveness of screening for Hepatitis B Virus (HBV) and Hepatitis C Virus (HCV) are generally heterogeneous in terms of risk groups, settings, screening intervention, outcomes and the economic modelling framework. It is therefore difficult to compare cost-effectiveness results between studies. This systematic review aims to summarise and critically assess existing economic models for HBV and HCV in order to identify the main methodological differences in modelling approaches. Methods: A structured search strategy was developed and a systematic review carried out. A critical assessment of the decision-analytic models was carried out according to the guidelines and framework developed for assessment of decision-analytic models in Health Technology Assessment of health care interventions. Results: The overall approach to analysing the cost-effectiveness of screening strategies was found to be broadly consistent for HBV and HCV. However, modelling parameters and related structure differed between models, producing different results. More recent publications performed better against a performance matrix, evaluating model components and methodology. Conclusion: When assessing screening strategies for HBV and HCV infection, the focus should be on more recent studies, which applied the latest treatment regimes, test methods and had better and more complete data on which to base their models. In addition to parameter selection and associated assumptions, careful consideration of dynamic versus static modelling is recommended. Future research may want to focus on these methodological issues. In addition, the ability to evaluate screening strategies for multiple infectious diseases, (HCV and HIV at the same time) might prove important for decision makers

    Design, manufacture, and evaluation of prototype telescope windows for use in low-vision aids.

    Get PDF
    Pixellated Optics, a class of optical devices which preserve phase front continuity only over small sub areas of the device, allow for a range of uses that would not otherwise be possible. One potential use is as Low Vision Aids (LVAs), where they are hoped to combine the function and performance of existing devices with the size and comfort of conventional eyewear. For these devices a Generalised Confocal Lenslet Array (GCLA) is designed to magnify object space, creating the effect of traditional refracting telescope within a thin, planar device. By creating a device that is appreciably thinner than existing LVA telescopes it is hoped that the comfort for the wearer will be increased. We have developed a series of prototype GLCA-based devices to examine their real-world performance, focussing on the resolution, magnification and clarity of image attainable through the devices. It is hoped that these will form the basis for a future LVA devices. This development has required novel manufacturing techniques and a phased development approach centred on maximising performance. Presented here will be an overview of the development so far, alongside the performance of the latest devices

    The evolutionary history of the stearoyl-CoA desaturase gene family in vertebrates

    Get PDF
    <p/> <p>Background</p> <p>Stearoyl-CoA desaturases (SCDs) are key enzymes involved in <it>de novo </it>monounsaturated fatty acid synthesis. They catalyze the desaturation of saturated fatty acyl-CoA substrates at the delta-9 position, generating essential components of phospholipids, triglycerides, cholesterol esters and wax esters. Despite being crucial for interpreting SCDs roles across species, the evolutionary history of the SCD gene family in vertebrates has yet to be elucidated, in particular their isoform diversity, origin and function. This work aims to contribute to this fundamental effort.</p> <p>Results</p> <p>We show here, through comparative genomics and phylogenetics that the SCD gene family underwent an unexpectedly complex history of duplication and loss events. Paralogy analysis hints that SCD1 and SCD5 genes emerged as part of the whole genome duplications (2R) that occurred at the stem of the vertebrate lineage. The SCD1 gene family expanded in rodents with the parallel loss of SCD5 in the Muridae family. The SCD1 gene expansion is also observed in the Lagomorpha although without the SCD5 loss. In the amphibian <it>Xenopus tropicalis </it>we find a single SCD1 gene but not SCD5, though this could be due to genome incompleteness. In the analysed teleost species no SCD5 is found, while the surrounding SCD5-less locus is conserved in comparison to tetrapods. In addition, the teleost SCD1 gene repertoire expanded to two copies as a result of the teleost specific genome duplication (3R). Finally, we describe clear orthologues of SCD1 and SCD5 in the chondrichthian, <it>Scyliorhinus canicula</it>, a representative of the oldest extant jawed vertebrate clade. Expression analysis in <it>S. canicula </it>shows that whilst SCD1 is ubiquitous, SCD5 is mainly expressed in the brain, a pattern which might indicate an evolutionary conserved function.</p> <p>Conclusion</p> <p>We conclude that the SCD1 and SCD5 genes emerged as part of the 2R genome duplications. We propose that the evolutionary conserved gene expression between distinct lineages underpins the importance of SCD activity in the brain (and probably the pancreas), in a yet to be defined role. We argue that an expression independent of an external stimulus, such as diet induced activity, emerged as a novel function in vertebrate ancestry allocated to the SCD5 isoform in various tissues (e.g. brain and pancreas), and it was selectively maintained throughout vertebrate evolution.</p

    Adaptive remodeling of the bacterial proteome by specific ribosomal modification regulates Pseudomonas infection and niche colonisation

    Get PDF
    Post-transcriptional control of protein abundance is a highly important, underexplored regulatory process by which organisms respond to their environments. Here we describe an important and previously unidentified regulatory pathway involving the ribosomal modification protein RimK, its regulator proteins RimA and RimB, and the widespread bacterial second messenger cyclic-di-GMP (cdG). Disruption of rimK affects motility and surface attachment in pathogenic and commensal Pseudomonas species, with rimK deletion significantly compromising rhizosphere colonisation by the commensal soil bacterium P. fluorescens, and plant infection by the pathogens P. syringae and P. aeruginosa. RimK functions as an ATP-dependent glutamyl ligase, adding glutamate residues to the C-terminus of ribosomal protein RpsF and inducing specific effects on both ribosome protein complement and function. Deletion of rimK in P. fluorescens leads to markedly reduced levels of multiple ribosomal proteins, and also of the key translational regulator Hfq. In turn, reduced Hfq levels induce specific downstream proteomic changes, with significant increases in multiple ABC transporters, stress response proteins and non-ribosomal peptide synthetases seen for both ΔrimK and Δhfq mutants. The activity of RimK is itself controlled by interactions with RimA, RimB and cdG. We propose that control of RimK activity represents a novel regulatory mechanism that dynamically influences interactions between bacteria and their hosts; translating environmental pressures into dynamic ribosomal changes, and consequently to an adaptive remodeling of the bacterial proteome

    Lifestyle, efficiency and limits: modelling transport energy and emissions using a socio-technical approach

    Get PDF
    It is well-known that societal energy consumption and pollutant emissions from transport are influenced not only by technical efficiency, mode choice and the carbon/pollutant content of energy but also by lifestyle choices and socio-cultural factors. However, only a few attempts have been made to integrate all of these insights into systems models of future transport energy demand or even scenario analysis. This paper addresses this gap in research and practice by presenting the development and use of quantitative scenarios using an integrated transport-energy-environment systems model to explore four contrasting futures for Scotland that compare transport-related ‘lifestyle’ changes and socio-cultural factors against a transition pathway focussing on transport electrification and the phasing out of conventionally fuelled vehicles using a socio-technical approach. We found that radical demand and supply strategies can have important synergies and trade-offs between reducing life cycle greenhouse gas and air quality emissions. Lifestyle change alone can have a comparable and earlier effect on transport carbon and air quality emissions than a transition to EVs with no lifestyle change. Yet, the detailed modelling of four contrasting futures suggests that both strategies have limits to meeting legislated carbon budgets, which may only be achieved with a combined strategy of radical change in travel patterns, mode and vehicle choice, vehicle occupancy and on-road driving behaviour with high electrification and phasing out of conventional petrol and diesel road vehicles. The newfound urgency of ‘cleaning up our act’ since the Paris Agreement and Dieselgate scandal suggests that we cannot just wait for the ‘technology fix’
    corecore