1,209 research outputs found

    Parameter uncertainty analysis for an operational hydrological model using residual-based and limits of acceptability approaches

    Get PDF
    Parameter uncertainty estimation is one of the major challenges in hydrological modeling. Here we present parameter uncertainty analysis of a recently released distributed conceptual hydrological model applied in the Nea catchment, Norway. Two variants of the generalized likelihood uncertainty estimation (GLUE) methodologies, one based on the residuals and the other on the limits of acceptability, were employed. Streamflow and remote sensing snow cover data were used in conditioning model parameters and in model validation. When using the GLUE limit of acceptability (GLUE LOA) approach, a streamflow observation error of 25&thinsp;% was assumed. Neither the original limits nor relaxing the limits up to a physically meaningful value yielded a behavioral model capable of predicting streamflow within the limits in 100&thinsp;% of the observations. As an alternative to relaxing the limits, the requirement for the percentage of model predictions falling within the original limits was relaxed. An empirical approach was introduced to define the degree of relaxation. The result shows that snow- and water-balance-related parameters induce relatively higher streamflow uncertainty than catchment response parameters. Comparable results were obtained from behavioral models selected using the two GLUE methodologies.</p

    Aircraft-based observations and high-resolution simulations of an Icelandic dust storm

    Get PDF
    The first aircraft-based observations of an Icelandic dust storm are presented. The measurements were carried out over the ocean near Iceland's south coast in February 2007. This dust event occurred in conjunction with an easterly barrier jet of more than 30 m s&lt;sup&gt;−1&lt;/sup&gt;. The aircraft measurements show high particle mass mixing ratios in an area of low wind speeds in the wake of Iceland near the coast, decreasing abruptly towards the jet. Simulations from the Weather Research and Forecasting Model coupled with Chemistry (WRF/Chem) indicate that the measured high mass mixing ratios and observed low visibility inside the wake are due to dust transported from Icelandic sand fields towards the ocean. This is confirmed by meteorological station data. Glacial outwash terrains located near the Mýrdalsjökull glacier are among simulated dust sources. Sea salt aerosols produced by the impact of strong winds on the ocean surface started to dominate as the aircraft flew away from Iceland into the jet. The present results support recent studies which suggest that Icelandic deserts should be considered as important dust sources in global and regional climate models

    Anthropogenic and forest fire pollution aerosol transported to the Arctic: observations from the POLARCAT-France spring campaign

    Get PDF
    During the POLARCAT-France airborne measurement campaign in spring 2008, several pollution plumes transported from mid-latitude regions were encountered. The study presented here focuses on air masses from two different geographic origins (Europe and Asia) and from 2 different source types (anthropogenic pollution and forest fires). One case study analyses an European air mass, which was sampled during three consecutive day. Modelling of the aerosol particle ageing by coagulation suggests that coagulation cannot solely explain the evolution of the size distributions, which is particularly true for the accumulation mode. Analyses of the aerosol refractory size distributions indicate that the Aitken mode was mostly composed of volatile compounds, while accumulation mode particles desorbed to a refractory mode yielding a modal mean diameter evolving from 48 to 59 nm for the three consecutive days of sampling the same air mass. The single refractory mode suggests an internally mixed aerosol population which is supported from electron microscopy and subsequent EDX analyses of the accumulation mode particles. Another case study focuses on European air masses polluted by fire emissions and Asian air masses with contributions from both biomass burning and anthropogenic emissions. On the one hand, the aerosol size distributions of the European biomass burning plumes are almost mono-modal with most of the particles found in the aged accumulation mode which desorbed uniformly. On the other hand, Asian air masses were more complex because of the mixing of different source contributions related to more variable and multimodal ambient and refractory aerosol size distributions. Electron microscopy illustrated soot-like inclusions in several samples. Within samples attributed to forest fire sources, the chemical signature is highly associated with the presence of potassium, which is characteristic for biomass burning plumes. The particle images suggest an internal mixing of sampled aerosol particles

    Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition

    Get PDF
    On 11 March 2011, an earthquake occurred about 130 km off the Pacific coast of Japan's main island Honshu, followed by a large tsunami. The resulting loss of electric power at the Fukushima Dai-ichi nuclear power plant developed into a disaster causing massive release of radioactivity into the atmosphere. In this study, we determine the emissions into the atmosphere of two isotopes, the noble gas xenon-133 (&lt;sup&gt;133&lt;/sup&gt;Xe) and the aerosol-bound caesium-137 (&lt;sup&gt;137&lt;/sup&gt;Cs), which have very different release characteristics as well as behavior in the atmosphere. To determine radionuclide emissions as a function of height and time until 20 April, we made a first guess of release rates based on fuel inventories and documented accident events at the site. This first guess was subsequently improved by inverse modeling, which combined it with the results of an atmospheric transport model, FLEXPART, and measurement data from several dozen stations in Japan, North America and other regions. We used both atmospheric activity concentration measurements as well as, for &lt;sup&gt;137&lt;/sup&gt;Cs, measurements of bulk deposition. Regarding &lt;sup&gt;133&lt;/sup&gt;Xe, we find a total release of 15.3 (uncertainty range 12.2–18.3) EBq, which is more than twice as high as the total release from Chernobyl and likely the largest radioactive noble gas release in history. The entire noble gas inventory of reactor units 1–3 was set free into the atmosphere between 11 and 15 March 2011. In fact, our release estimate is higher than the entire estimated &lt;sup&gt;133&lt;/sup&gt;Xe inventory of the Fukushima Dai-ichi nuclear power plant, which we explain with the decay of iodine-133 (half-life of 20.8 h) into &lt;sup&gt;133&lt;/sup&gt;Xe. There is strong evidence that the &lt;sup&gt;133&lt;/sup&gt;Xe release started before the first active venting was made, possibly indicating structural damage to reactor components and/or leaks due to overpressure which would have allowed early release of noble gases. For &lt;sup&gt;137&lt;/sup&gt;Cs, the inversion results give a total emission of 36.6 (20.1–53.1) PBq, or about 43% of the estimated Chernobyl emission. Our results indicate that &lt;sup&gt;137&lt;/sup&gt;Cs emissions peaked on 14–15 March but were generally high from 12 until 19 March, when they suddenly dropped by orders of magnitude at the time when spraying of water on the spent-fuel pool of unit 4 started. This indicates that emissions may not have originated only from the damaged reactor cores, but also from the spent-fuel pool of unit 4. This would also confirm that the spraying was an effective countermeasure. We explore the main dispersion and deposition patterns of the radioactive cloud, both regionally for Japan as well as for the entire Northern Hemisphere. While at first sight it seemed fortunate that westerly winds prevailed most of the time during the accident, a different picture emerges from our detailed analysis. Exactly during and following the period of the strongest &lt;sup&gt;137&lt;/sup&gt;Cs emissions on 14 and 15 March as well as after another period with strong emissions on 19 March, the radioactive plume was advected over Eastern Honshu Island, where precipitation deposited a large fraction of &lt;sup&gt;137&lt;/sup&gt;Cs on land surfaces. Radioactive clouds reached North America on 15 March and Europe on 22 March. By middle of April, &lt;sup&gt;133&lt;/sup&gt;Xe was fairly uniformly distributed in the middle latitudes of the entire Northern Hemisphere and was for the first time also measured in the Southern Hemisphere (Darwin station, Australia). In general, simulated and observed concentrations of &lt;sup&gt;133&lt;/sup&gt;Xe and &lt;sup&gt;137&lt;/sup&gt;Cs both at Japanese as well as at remote sites were in good quantitative agreement. Altogether, we estimate that 6.4 PBq of &lt;sup&gt;137&lt;/sup&gt;Cs, or 18% of the total fallout until 20 April, were deposited over Japanese land areas, while most of the rest fell over the North Pacific Ocean. Only 0.7 PBq, or 1.9% of the total fallout were deposited on land areas other than Japan

    Long-term trends of black carbon and sulphate aerosol in the Arctic: changes in atmospheric transport and source region emissions

    Get PDF
    As a part of the IPY project POLARCAT (Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate, Chemistry, Aerosols and Transport) and building on previous work (Hirdman et al., 2010), this paper studies the long-term trends of both atmospheric transport as well as equivalent black carbon (EBC) and sulphate for the three Arctic stations Alert, Barrow and Zeppelin. We find a general downward trend in the measured EBC concentrations at all three stations, with a decrease of −2.1&amp;plusmn;0.4 ng m&lt;sup&gt;−3&lt;/sup&gt; yr&lt;sup&gt;−1&lt;/sup&gt; (for the years 1989–2008) and −1.4&amp;plusmn;0.8 ng m&lt;sup&gt;−3&lt;/sup&gt; yr&lt;sup&gt;−1&lt;/sup&gt; (2002–2009) at Alert and Zeppelin respectively. The decrease at Barrow is, however, not statistically significant. The measured sulphate concentrations show a decreasing trend at Alert and Zeppelin of −15&amp;plusmn;3 ng m&lt;sup&gt;−3&lt;/sup&gt; yr&lt;sup&gt;−1&lt;/sup&gt; (1985–2006) and −1.3&amp;plusmn;1.2 ng m&lt;sup&gt;−3&lt;/sup&gt; yr&lt;sup&gt;−1&lt;/sup&gt; (1990–2008) respectively, while there is no trend detectable at Barrow. &lt;br&gt;&lt;br&gt; To reveal the contribution of different source regions on these trends, we used a cluster analysis of the output of the Lagrangian particle dispersion model FLEXPART run backward in time from the measurement stations. We have investigated to what extent variations in the atmospheric circulation, expressed as variations in the frequencies of the transport from four source regions with different emission rates, can explain the long-term trends in EBC and sulphate measured at these stations. We find that the long-term trend in the atmospheric circulation can only explain a minor fraction of the overall downward trend seen in the measurements of EBC (0.3–7.2%) and sulphate (0.3–5.3%) at the Arctic stations. The changes in emissions are dominant in explaining the trends. We find that the highest EBC and sulphate concentrations are associated with transport from Northern Eurasia and decreasing emissions in this region drive the downward trends. Northern Eurasia (cluster: NE, WNE and ENE) is the dominant emission source at all Arctic stations for both EBC and sulphate during most seasons. In wintertime, there are indications that the EBC emissions from the eastern parts of Northern Eurasia (ENE cluster) have increased over the last decade

    Advanced Diagnostics for the Study of Linearly Polarized Emission. II: Application to Diffuse Interstellar Radio Synchrotron Emission

    Get PDF
    Diagnostics of polarized emission provide us with valuable information on the Galactic magnetic field and the state of turbulence in the interstellar medium, which cannot be obtained from synchrotron intensity alone. In Paper I (Herron et al. 2017b), we derived polarization diagnostics that are rotationally and translationally invariant in the QQ-UU plane, similar to the polarization gradient. In this paper, we apply these diagnostics to simulations of ideal magnetohydrodynamic turbulence that have a range of sonic and Alfv\'enic Mach numbers. We generate synthetic images of Stokes QQ and UU for these simulations, for the cases where the turbulence is illuminated from behind by uniform polarized emission, and where the polarized emission originates from within the turbulent volume. From these simulated images we calculate the polarization diagnostics derived in Paper I, for different lines of sight relative to the mean magnetic field, and for a range of frequencies. For all of our simulations, we find that the polarization gradient is very similar to the generalized polarization gradient, and that both trace spatial variations in the magnetoionic medium for the case where emission originates within the turbulent volume, provided that the medium is not supersonic. We propose a method for distinguishing the cases of emission coming from behind or within a turbulent, Faraday rotating medium, and a method to partly map the rotation measure of the observed region. We also speculate on statistics of these diagnostics that may allow us to constrain the physical properties of an observed turbulent region.Comment: 34 pages, 25 figures, accepted for publication in Ap

    Winds, B-Fields, and Magnetotails of Pulsars

    Full text link
    We investigate the emission of rotating magnetized neutron stars due to the acceleration and radiation of particles in the relativistic wind and in the magnetotail of the star. We consider that the charged particles are accelerated by driven collisionless reconnection. Outside of the light cylinder, the star's rotation acts to wind up the magnetic field to form a predominantly azimuthal, slowly decreasing with distance, magnetic field of opposite polarity on either side of the equatorial plane normal to the star's rotation axis. The magnetic field annihilates across the equatorial plane with the magnetic energy going to accelerate the charged particles to relativistic energies. For a typical supersonically moving pulsar, the star's wind extends outward to the standoff distance with the interstellar medium. At larger distances, the power output of pulsar's wind E˙w\dot{E}_w of electromagnetic field and relativistic particles is {\it redirected and collimated into the magnetotail} of the star. In the magnetotail it is proposed that equipartition is reached between the magnetic energy and the relativistic particle energy. For such conditions, synchrotron radiation from the magnetotails may be a significant fraction of E˙w\dot{E}_w for high velocity pulsars. An equation is derived for the radius of the magnetotail rm(z′)r_m(z^\prime) as a function of distance z′z^\prime from the star. For large distances z′z^\prime, of the order of the distance travelled by the star, we argue that the magnetotail has a `trumpet' shape owing to the slowing down of the magnetotail flow.Comment: 11 pages, 4 figures, accepted for publication in Ap

    No detection of large-scale magnetic fields at the surfaces of Am and HgMn stars

    Full text link
    We investigate the magnetic dichotomy between Ap/Bp and other A-type stars by carrying out a deep spectropolarimetric study of Am and HgMn stars. Using the NARVAL spectropolarimeter at the Telescope Bernard Lyot (Observatoire du Pic du Midi, France), we obtained high-resolution circular polarisation spectroscopy of 12 Am stars and 3 HgMn stars. Using Least Squares Deconvolution (LSD), no magnetic field is detected in any of the 15 observed stars. Uncertaintiies as low as 0.3 G (respectively 1 G) have been reached for surface-averaged longitudinal magnetic field measurements for Am (respectively HgMn) stars. Associated with the results obtained previously for Ap/Bp stars, our study confirms the existence of a magnetic dichotomy among A-type stars. Our data demonstrate that there is at least one order of magnitude difference in field strength between Zeeman detected stars (Ap/Bp stars) and non Zeeman detected stars (Am and HgMn stars). This result confirms that the spectroscopically-defined Ap/Bp stars are the only A-type stars harbouring detectable large-scale surface magnetic fields.Comment: 6 pages, 3 figures, accepted for publication in A&
    • …
    corecore