7,460 research outputs found

    Powerful partnership: crosstalk between pannexin 1 and the cytoskeleton

    Get PDF
    The roles of pannexin 1 (Panx1) large-pore ion and metabolite channels are becoming recognized in many physiological and pathophysiological scenarios. Recent evidence has tightly linked Panx1 trafficking and function to the cytoskeleton, a multi-component network that provides critical structural support, transportation, and scaffolding functions in all cell types. Here we review early work demonstrating the mechanosensitive activation of Panx1 channels, and expand on more recent evidence directly linking Panx1 to the cytoskeleton. Further, we examine the reciprocal regulation between Panx1 and the cytoskeleton, and discuss the involvement of Panx1 in cytoskeletal-regulated cell behaviors. Finally, we identify important gaps in the current knowledge surrounding this emerging Panx1-cytoskeleton relationship

    Big Data and Analysis of Data Transfers for International Research Networks Using NetSage

    Get PDF
    Modern science is increasingly data-driven and collaborative in nature. Many scientific disciplines, including genomics, high-energy physics, astronomy, and atmospheric science, produce petabytes of data that must be shared with collaborators all over the world. The National Science Foundation-supported International Research Network Connection (IRNC) links have been essential to enabling this collaboration, but as data sharing has increased, so has the amount of information being collected to understand network performance. New capabilities to measure and analyze the performance of international wide-area networks are essential to ensure end-users are able to take full advantage of such infrastructure for their big data applications. NetSage is a project to develop a unified, open, privacy-aware network measurement, and visualization service to address the needs of monitoring today's high-speed international research networks. NetSage collects data on both backbone links and exchange points, which can be as much as 1Tb per month. This puts a significant strain on hardware, not only in terms storage needs to hold multi-year historical data, but also in terms of processor and memory needs to analyze the data to understand network behaviors. This paper addresses the basic NetSage architecture, its current data collection and archiving approach, and details the constraints of dealing with this big data problem of handling vast amounts of monitoring data, while providing useful, extensible visualization to end users

    Decomposition of coarse woody debris in a long-term litter manipulation experiment: A focus on nutrient availability

    Get PDF
    The majority of above-ground carbon in tropical forests is stored in wood, which is returned to the atmosphere during decomposition of coarse woody debris. However, the factors controlling wood decomposition have not been experimentally manipulated over time scales comparable to the length of this process.We hypothesized that wood decomposition is limited by nutrient availability and tested this hypothesis in a long-term litter addition and removal experiment in a lowland tropical forest in Panama. Specifically, we quantified decomposition using a 15-year chronosequence of decaying boles, and measured respiration rates and nutrient limitation of wood decomposer communities.The long-term probability that a dead tree completely decomposed was decreased in plots where litter was removed, but did not differ between litter addition and control treatments. Similarly, respiration rates of wood decomposer communities were greater in control treatments relative to litter removal plots; litter addition treatments did not differ from either of the other treatments. Respiration rates increased in response to nutrient addition (nitrogen, phosphorus, and potassium) in the litter removal and addition treatments, but not in the controls.Established decreases in concentrations of soil nutrients in litter removal plots and increased respiration rates in response to nutrient addition suggest that reduced rates of wood decomposition after litter removal were caused by decreased nutrient availability. The effects of litter manipulations differed directionally from a previous short-term decomposition study in the same plots, and reduced rates of bole decomposition in litter removal plots did not emerge until after more than 6 years of decomposition. These differences suggest that litter-mediated effects on nutrient dynamics have complex interactions with decomposition over time

    Open Wilson Lines and Chiral Condensates in Thermal Holographic QCD

    Full text link
    We investigate various aspects of a proposal by Aharony and Kutasov arXiv:0803.3547 [hep-th] for the gravity dual of an open Wilson line in the Sakai-Sugimoto model or its non-compact version. In particular, we use their proposal to determine the effect of finite temperature, as well as background electric and magnetic fields, on the chiral symmetry breaking order parameter. We also generalize their prescription to more complicated worldsheets and identify the operators dual to such worldsheets.Comment: 45 pages, 18 figures; added reference

    ISM In-Space Manufacturing

    Get PDF
    Develop and enable the technologies, materials, and processes required to provide affordable, sustainable on-demand manufacturing, recycling, and repair during Exploration Missions

    Exoplanet atmospheres with EChO: spectral retrievals using EChOSim

    Full text link
    We demonstrate the effectiveness of the Exoplanet Characterisation Observatory mission concept for constraining the atmospheric properties of hot and warm gas giants and super Earths. Synthetic primary and secondary transit spectra for a range of planets are passed through EChOSim (Waldmann & Pascale 2014) to obtain the expected level of noise for different observational scenarios; these are then used as inputs for the NEMESIS atmospheric retrieval code and the retrieved atmospheric properties (temperature structure, composition and cloud properties) compared with the known input values, following the method of Barstow et al. (2013a). To correctly retrieve the temperature structure and composition of the atmosphere to within 2 {\sigma}, we find that we require: a single transit or eclipse of a hot Jupiter orbiting a sun-like (G2) star at 35 pc to constrain the terminator and dayside atmospheres; 20 transits or eclipses of a warm Jupiter orbiting a similar star; 10 transits/eclipses of a hot Neptune orbiting an M dwarf at 6 pc; and 30 transits or eclipses of a GJ1214b-like planet.Comment: 13 pages, 15 figures, 1 table. Accepted by Experimental Astronomy. The final publication will shortly be available at Springer via http://dx.doi.org/10.1007/s10686-014-9397-

    Solving Pure Yang Mills in 2+1 Dimensions

    Full text link
    We analytically compute the spectrum of the spin zero glueballs in the planar limit of pure Yang-Mills theory in 2+1 dimensions. The new ingredient is provided by our computation of a new non-trivial form of the ground state wave-functional. The mass spectrum of the theory is determined by the zeroes of Bessel functions, and the agreement with large N lattice data is excellent.Comment: 4 page letter; version to appear in Physical Review Letter
    corecore