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The roles of pannexin 1 (Panx1) large-pore ion and metabolite channels are becoming
recognized in many physiological and pathophysiological scenarios. Recent evidence
has tightly linked Panx1 trafficking and function to the cytoskeleton, a multi-component
network that provides critical structural support, transportation, and scaffolding functions
in all cell types. Here we review early work demonstrating the mechanosensitive activation
of Panx1 channels, and expand on more recent evidence directly linking Panx1 to
the cytoskeleton. Further, we examine the reciprocal regulation between Panx1 and
the cytoskeleton, and discuss the involvement of Panx1 in cytoskeletal-regulated cell
behaviors. Finally, we identify important gaps in the current knowledge surrounding this
emerging Panx1-cytoskeleton relationship.
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INTRODUCTION
Mechanical forces shape virtually all biological processes in myr-
iad ways (for a recent review see Lim et al., 2010). The cytoskele-
ton is a complex interconnected protein meshwork that plays
a critical role in cellular biomechanics. Its many components
and accessory/regulatory proteins provide structural stability and
shape, conduits for the transport of vesicles and macromolecules,
and scaffolding for receptors and ion channels. It also commu-
nicates with multiple signaling pathways within and outside of
cells to modulate these activities in response to the ever-changing
demands of cells and their environments (Jaqaman and Grinstein,
2012). Mechanosensitive channels provide an important means
of crosstalk between chemical and mechanical signaling systems.
These are channels that pass molecules and/or ions in response to
stretch, and are often intimately associated with the cytoskeleton
(reviewed in Hamill, 2006).

The pannexins (Panxs) were initially discovered as homologs
to the innexin invertebrate gap junction protein family (Panchin
et al., 2000). The initial electrophysiological characterization of
Panx1 channels provided evidence of a large conductance acti-
vated by membrane depolarization (Bruzzone et al., 2003). Soon
after this ground-breaking finding, Bao et al. (2004) made a fur-
ther striking discovery. They uncovered an activation mechanism
relating the activation of Panx1 to mechanical deformation, and
they provided the first demonstration that Panx1 can form sin-
gle membrane mechanosensitive channels. They also provided
the first evidence for the role of Panx1 in adenosine triphos-
phate (ATP) release, which is perhaps one of the most well-known
features of these large pore channels.

These expression system findings have since been expanded to
erythrocytes (Locovei et al., 2006), lung epithelium (Seminario-
Vidal et al., 2011; Richter et al., 2014), and more recently, neurons

(Xia et al., 2012). Further, Panx1 has been shown to physically
interact with the actin cytoskeleton (Bhalla-Gehi et al., 2010;
Wicki-Stordeur and Swayne, 2013) and the expression of Panx1
exhibits a significant level of control over multiple cytoskeletal
elements (Penuela et al., 2012). Here we discuss these findings
and identify key knowledge gaps that will be important to fur-
ther unravel the potentially powerful relationship between Panx1
and the cytoskeleton.

ACTIVATION OF Panx1 BY MECHANICAL STRESS
The first demonstration of stretch-mediated Panx1 opening
resulted from work in an ectopic expression system by Bao et al.
(2004). The authors investigated whether Panx1 exhibits the
properties of a mechanical conduit for ATP by expressing human
Panx1 in Xenopus oocytes. In cell-free and cell-attached mem-
brane patches, they observed a large conductance attributed to
Panx1 expression that exhibited depolarization-dependent acti-
vation associated with ATP release. To test for mechanosensitive
properties, they used single channel patch clamp coupled with
a negative pressure stimulus (via suction applied to the patch
pipette). This mechanical stimulation superseded voltage depen-
dent activation, as it occurred over a wide range of membrane
potentials.

A network of actin, known as the cellular “cortex,” forms a
tight association with the plasma membrane acting as molec-
ular scaffold for ion channels and receptors (recently reviewed
in Salbreux et al., 2012). While it is sometimes assumed that
the cytoskeleton is not present in excised membrane patches in
electrophysiological experiments, it is in fact normally present
unless specific measures are taken to disrupt the tight cytoskele-
ton/membrane association (recently reviewed in Hamill, 2006).
For example, amongst several groups investigating this intriguing
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question, by elegantly combining scanning force microscopy with
patch-clamping techniques, Sakmann’s lab (Horber et al., 1995)
confirmed the continued presence of the cytoskeleton in cell-free
membrane patches. Further, a recent elegant study has demon-
strated that the actin cytoskeleton functions as a “molecular
device” in the activation of mechanosensitive channels by both
concentrating and conducting the forces required for channel
opening (Hayakawa et al., 2008). Although this has not yet been
directly tested in the context of Panx1 channels, it is certainly of
interest in light of the recent discovery of the Panx1 physical asso-
ciation with actin (Bhalla-Gehi et al., 2010; Wicki-Stordeur and
Swayne, 2013).

Although quite unlike one another in many ways, erythrocytes,
lung epithelium, and neurons are all linked by their responsive-
ness to mechanical deformation through Panx1-mediated ATP
release. Locovei et al. (2006) observed that Panx1 is present in
human erythrocytes, and mediates ATP release and ion flux in
response to depolarization and mechanical stretch elicited by
pressure in the patch pipette. Another group (Seminario-Vidal
et al., 2011) later revealed the role of Panx1 as the ATP conduit
responsive to bronchial and tracheal epithelial cell swelling (via
hypotonic challenge). Interestingly, their data pointed to a mech-
anism by which RhoA, a regulator of the actin cytoskeleton in the
formation of stress fibers, transduces cell swelling to Panx1 open-
ing. Recently, Richter and colleagues confirmed the role of Panx1
in ATP release from lung epithelial cells in response to stretch. In
this case ATP release via Panx1 was elicited by changes in hydro-
static pressure (Richter et al., 2014). An intriguing downstream
effect of the hydrostatic pressure-induced ATP release from cells
was a concomitant activation of KATP channels. It will be interest-
ing to see whether this functional relationship is relevant to other
cell types in which Panx1 and KATP channels are co-expressed.
More recently, another group (Xia et al., 2012) confirmed the
involvement of Panx1 in mechanical deformation-mediated ATP
release of retinal ganglion neurons using both a hypotonic solu-
tion paradigm and a special cell-stretching chamber.

While mechanical stretch-mediated ATP release can be a phys-
iological phenomenon for erythrocytes and airway epithelia, it is
normally associated with pathophysiology in the context of the
nervous system. Here, mechanical stretch via impact-mediated
axonal deformation or secondary to swelling is associated with
neuronal injury (recently reviewed in Laplaca and Prado, 2010).
We recently showed, however, that nervous system resident neu-
ral stem and progenitor cells, migrating neuroblasts and newborn
neurons also express Panx1 (Wicki-Stordeur et al., 2012; Wicki-
Stordeur and Swayne, 2013). These cells are normally subject to
intense and differing mechanical forces from the time they are
born through their journey along the rostral migratory stream
under physiologically normal conditions. These forces are elicited
through the influence of multiple types of extracellular matrix
proteins and various geometrical constraints (reviewed in Barros
et al., 2011 and Moore and Sheetz, 2011).

Panx1 DIRECTLY INTERACTS WITH THE ACTIN
CYTOSKELETON
Bhalla-Gehi and colleagues first demonstrated that ectopically
expressed Panx1 interacts with actin (through the C-terminus

of Panx1), and that actin microfilaments are critical for
Panx1 trafficking to and stability at the plasma membrane
(Bhalla-Gehi et al., 2010). Cytochalasin B treatment, an actin
filament-destabilizing compound, significantly disrupted the
plasma membrane distribution and mobility of Panx1-EGFP
in the breast cancer-derived, BICR-M1Rk cell line. In contrast,
Panx1-EGFP was insensitive to nocodazole-mediated disruption
of microtubules.

Actin and its modulator, actin-related protein 3 (Arp3), were
two of several cytoskeletal proteins we recently identified as
Panx1-interacting proteins by immunoprecipitation coupled to
liquid chromatography and tandem mass spectrometry (LC-
MS/MS; Wicki-Stordeur and Swayne, 2013). We additionally
co-precipitated endogenous Panx1, actin and Arp3, further sup-
porting the idea that these physical interactions occur naturally
and are relevant to Panx1 function and signaling. Arp3 closely
resembles actin monomers in structure and is part of the seven
subunit Arp2/3 actin-modifying complex (reviewed in Firat-
Karalar and Welch, 2011). In fact, Arp2/3 functions as a nucle-
ation site for new microfilaments, which effectively generates a
Y-branched network that allows for actin-mediated mechanical
force generation (Mogilner, 2006).

Panx1 IS IMPLICATED IN CELL BEHAVIORS RELIANT ON
ACTIN REMODELING
Using pharmacological tools (probenecid), siRNA-mediated
Panx1 knockdown and plasmid-mediated Panx1 overexpression,
we further determined that Panx1 has a major influence on
neurite outgrowth and cell migration in Neuro-2a cells and ven-
tricular zone neural stem and progenitor cells (Wicki-Stordeur
and Swayne, 2013). We found that Panx1 is positively associ-
ated with cell migration, whereas it negatively regulates neurite
outgrowth. Neurite extension and cell migration are two cellu-
lar behaviors that are heavily reliant on complex coordination
of both actin and microtubular cytoskeletal dynamics (recently
reviewed in Schaefer et al., 2008; Kaverina and Straube, 2011;
Salbreux et al., 2012).

An earlier study on C6 glioma cells engineered to express
Panx1, demonstrated that ectopic Panx1 overtakes control of the
actomyosin system to accelerate the compaction of multicellular
C6 glioma aggregates (Lai et al., 2007). Furthermore, the authors
observed an enhancement of ATP release attributable to Panx1
overexpression, as well as P2X7 receptor modulator sensitivity
to the Panx1-mediated changes in cell compaction implicated
in the remodeling. In addition to these predictable observa-
tions, the presence of Panx1 also had a significant impact on the
distribution of the actin cortical network.

Work by several groups had earlier established a connection
between P2X receptors and the actin cytoskeleton (Kim et al.,
2001; Pubill et al., 2001; Pfeiffer et al., 2004). Essentially, P2X7
receptors were shown to interact with actin (Kim et al., 2001),
while other groups demonstrated that ATP activation of P2X
receptors promotes actin network restructuring through an actin-
modifying complex to alter cellular morphology (Pubill et al.,
2001; Pfeiffer et al., 2004). In our proteomic analysis of Panx1
interacting partners (Wicki-Stordeur and Swayne, 2013) we iden-
tified actin, Arp3 and other cytoskeletal regulators, and additional
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proteins, but we did not detect P2X7 receptors. It is not known
whether P2X7 receptors are bystanders, or are requisite for the
crosstalk between Panx1 and the actin cytoskeleton. Further,
whether their involvement is cell-type specific or state-specific
(physiological vs. pathophysiological; see Morelli et al., 2003 and
Homma et al., 2008) remains to be determined.

OTHER EFFECTS OF Panx1 EXPRESSION ON THE
CYTOSKELETON
Not only is it likely that Panx1 functionally interacts with the
cytoskeleton, but it can also alter the cytoskeletal proteome, as
recently shown by Penuela et al. (2012). This group investigated
the role of Panx1 in melanoma tumorigenesis and metastasis,
and found that increased Panx1 expression correlated with tumor
“aggressiveness.” An shRNA-mediated reduction in Panx1 expres-
sion was able to revert the tumor cells to a more melanocytic
phenotype (reduced cell migration, increased melanin produc-
tion and process formation). Using a 2D gel/mass spectrometry
approach, the authors identified two important cell structure
proteins that were down regulated by the reduction in Panx1,
vimentin, an intermediate filament protein, and beta-catenin, an
important regulator of cell adhesion. Earlier, Lai and colleagues
demonstrated that ectopic expression of Panx1 in C6 glioma cells
resulted in a dramatically altered cell morphology (Lai et al.,
2007). Panx1 expression led to a flattened morphology quite dis-
tinct from the spindle-shaped morphology normally exhibited by
these cells. The precise cytoskeletal alterations resulting in this
striking change in cell shape were not identified.

These studies along with our recent discovery that modulating
Panx1 expression and function has a dramatic impact on neurite
outgrowth in Neuro-2a cells and ventricular zone neural stem and
progenitor cells (Wicki-Stordeur and Swayne, 2013) suggest that
Panx1 is an important cytoskeletal regulator.

CONCLUDING REMARKS
It is becomingly increasingly clear that the functional role of
Panx1 in cells is closely tied to the cytoskeleton. Panx1 is sensi-
tive to stretch, is involved in cytoskeletal-associated cell behaviors
and physically interacts with actin. Further, Panx1 exerts influ-
ence on the expression of cytoskeletal proteins and when ectopi-
cally expressed, can infiltrate and overtake control of the actin
cytoskeleton, even though it is not normally present. This sug-
gests that Panx1 is likely a powerful regulator of the cytoskeleton
in cells in which it is endogenously expressed.

We are now working on unraveling the mechanistic details
underlying the crosstalk between Panx1, actin, the Arp2/3 com-
plex and the other cytoskeletal elements, including elements asso-
ciated with microtubular dynamics uncovered by our unbiased
proteomic analysis of Panx1 interactors in cells that endoge-
nously express Panx1. By studying these interactions, we hope to
gain detailed information on the molecular players that are key
to Panx1/cytoskeletal crosstalk. This work will bridge significant
knowledge gaps in our understanding of the physiological and
pathophysiological roles of Panx1.
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