2,437 research outputs found

    Comparison between S. T. radar and in situ balloon measurements

    Get PDF
    A campaign for simultaneous in situ and remote observation of both troposphere and stratosphere took place near Aire-sur-l'Adour (in southeastern France) on May 4, 1984. The aim of this campaign was a better understanding of the physics of radar echoes. The backscattered signal obtained with a stratosphere-troposphere radar both at the vertical and 15 deg. off vertical is compared with the velocity and temperature measurements made in the same region (about 10 km north of the radar site) by balloon-borne ionic anenometers and temperature sensors. In situ measurements clearly indicate that the temperature fluctuations are not always consistent with the standard turbulent theory. Nevertheless, the assumptions generally made (isotropy and turbulent field in k) and the classical formulation so derived for radar reflectivity are able to reproduce the shape of the radar return power profiles in oblique directions. Another significant result is the confirmation of the role played by the atmospheric stratification in the vertical echo power. It is important to develop these simultaneous in situ and remote experiments for a better description of the dynamical and thermal structure of the atmosphere and for a better understanding of the mechanisms governing clear-air radar reflectivity

    Kaon production at subthreshold and threshold energies

    Get PDF
    We summarize what we have learnt about the kaon production in nucleus-nucleus collisions in the last decade. We will address three questions: a) Is the K+K^+ production sensitive to the nuclear equation of state? b) How can it happen that at the same excess energy the same number of K+K^+ and KK^- are produced in heavy ion collisions although the elementary cross section in pp collisions differs by orders of magnitudes? and c) Why kaons don't flow?Comment: 5 pages, 4 figures, contribution to Strange Quark Matter 200

    Heavy quark(onium) at LHC: the statistical hadronization case

    Full text link
    We discuss the production of charmonium in nuclear collisions within the framework of the statistical hadronization model. We demonstrate that the model reproduces very well the availble data at RHIC. We provide predictions for the LHC energy where, dependently on the charm production cross section, a dramatically different behaviour of charmonium production as a function of centrality might be expected. We discuss also the case in elementary collisions, where clearly the statistical model does not reproduce the measurements.Comment: 8 pages, 5 figures; proceeding of SQM09, Buzios, Brazil, to be published in J. Phys.

    Effects of momentum conservation on the analysis of anisotropic flow

    Full text link
    We present a general method for taking into account correlations due to momentum conservation in the analysis of anisotropic flow, either by using the two-particle correlation method or the standard flow vector method. In the latter, the correlation between the particle and the flow vector is either corrected through a redefinition (shift) of the flow vector, or subtracted explicitly from the observed flow coefficient. In addition, momentum conservation contributes to the reaction plane resolution. Momentum conservation mostly affects the first harmonic in azimuthal distributions, i.e., directed flow. It also modifies higher harmonics, for instance elliptic flow, when they are measured with respect to a first harmonic event plane such as one determined with the standard transverse momentum method. Our method is illustrated by application to NA49 data on pion directed flow.Comment: RevTeX 4, 10 pages, 1 eps figure. Version accepted for publication in Phys Rev

    Flow angle from intermediate mass fragment measurements

    Full text link
    Directed sideward flow of light charged particles and intermediate mass fragments was measured in different symmetric reactions at bombarding energies from 90 to 800 AMeV. The flow parameter is found to increase with the charge of the detected fragment up to Z = 3-4 and then turns into saturation for heavier fragments. Guided by simple simulations of an anisotropic expanding thermal source, we show that the value at saturation can provide a good estimate of the flow angle, Θflow\Theta_{flow}, in the participant region. It is found that Θflow\Theta_{flow} depends strongly on the impact parameter. The excitation function of Θflow\Theta_{flow} reveals striking deviations from the ideal hydrodynamical scaling. The data exhibit a steep rise of \Theta_{\flow} to a maximum at around 250-400 AMeV, followed by a moderate decrease as the bombarding energy increases further.Comment: 28 pages Revtex, 6 figures (ps files), to appear in Nucl.Phys.

    Temperature distribution in selective laser-tissue interaction

    Get PDF
    Selective photothermal interaction using dye enhancement has proven to be effective in minimizing surrounding tissue damage and delivering energy to target tissue. During laser irradiation, the process of photon absorption and thermal energy diffusion in the target tissue and its surrounding tissue are crucial. Such information allows the selection of proper operating parameters such as dye concentrations, laser power, and exposure time for optimal therapeutic effect. Combining the Monte Carlo method for energy absorption and the finite difference method for heat diffusion, the temperature distributions in target tissue and surrounding tissue in dye enhanced laser photothermal interaction are obtained. Different tissue configurations and dye enhancement are used in the simulation, and different incident beam sizes are also used to determine optimum beam sizes for various tissue configurations. Our results show that the algorithm developed in this study could predict the thermal outcome of laser irradiation. Our simulation indicates that with appropriate absorption enhancement of the target tissue, the temperature in the target tissue and in the surrounding tissue can be effectively controlled. This method can be used for optimization of lesion treatment using laser photothermal interactions. It may also provide guidance for laser immunotherapy in cancer treatment, since the immunological responses are believed to be related to tissue temperature changes

    Differential directed flow in Au+Au collisions

    Full text link
    We present experimental data on directed flow in semi-central Au+Au collisions at incident energies from 90 to 400 A MeV. For the first time for this energy domain, the data are presented in a transverse momentum differential way. We study the first order Fourier coefficient v1 for different particle species and establish a gradual change of its patterns as a function of incident energy and for different regions in rapidity.Comment: 5 pages, Latex, 5 eps figures, accepted for publication in Phys. Rev. C (Rapid Communications). Data files available at http://www-linux.gsi.de/~andronic/fopi/v1.htm

    Intersubband decay of 1-D exciton resonances in carbon nanotubes

    Full text link
    We have studied intersubband decay of E22 excitons in semiconducting carbon nanotubes experimentally and theoretically. Photoluminescence excitation line widths of semiconducting nanotubes with chiral indicess (n, m) can be mapped onto a connectivity grid with curves of constant (n-m) and (2n+m). Moreover, the global behavior of E22 linewidths is best characterized by a strong increase with energy irrespective of their (n-m) mod(3)= \pm 1 family affiliation. Solution of the Bethe-Salpeter equations shows that the E22 linewidths are dominated by phonon assisted coupling to higher momentum states of the E11 and E12 exciton bands. The calculations also suggest that the branching ratio for decay into exciton bands vs free carrier bands, respectively is about 10:1.Comment: 4 pages, 4 figure

    Event Anisotropy in High Energy Nucleus-Nucleus Collisions

    Full text link
    The predictions of event anisotropy parameters from transport model RQMD are compared with the recent experimental measurements for 158AA GeV Pb+Pb collisions. Using the same model, we study the time evolution of event anisotropy at 2AA GeV and 158AA GeV for several colliding systems. For the first time, both momentum and configuration space information are studied using the Fourier analysis of the azimuthal angular distribution. We find that, in the model, the initial geometry of the collision plays a dominant role in determining the anisotropy parameters.Comment: 18 pages, 7 figures, 2 table
    corecore