225 research outputs found

    Structural Routability of n-Pairs Information Networks

    Full text link
    Information does not generally behave like a conservative fluid flow in communication networks with multiple sources and sinks. However, it is often conceptually and practically useful to be able to associate separate data streams with each source-sink pair, with only routing and no coding performed at the network nodes. This raises the question of whether there is a nontrivial class of network topologies for which achievability is always equivalent to routability, for any combination of source signals and positive channel capacities. This chapter considers possibly cyclic, directed, errorless networks with n source-sink pairs and mutually independent source signals. The concept of downward dominance is introduced and it is shown that, if the network topology is downward dominated, then the achievability of a given combination of source signals and channel capacities implies the existence of a feasible multicommodity flow.Comment: The final publication is available at link.springer.com http://link.springer.com/chapter/10.1007/978-3-319-02150-8_

    Network routing capacity

    Full text link

    SAP Regulates TH2 Differentiation and PKC-θ-Mediated Activation of NF-κB1

    Get PDF
    AbstractXLP is caused by mutations affecting SAP, an adaptor that recruits Fyn to SLAM family receptors. SAP-deficient mice recapitulate features of XLP, including increased T cell activation and decreased humoral responses post-infection. SAP-deficient T cells also show increased TCR-induced IFN-γ and decreased TH2 cytokine production. We demonstrate that the defect in IL-4 secretion in SAP-deficient T cells is independent of increased IFN-γ production. SAP-deficient cells respond normally to polarizing cytokines, yet show impaired TCR-mediated induction of GATA-3 and IL-4. Examination of TCR signaling revealed normal Ca2+ mobilization and ERK activation in SAP-deficient cells, but decreased PKC-θ recruitment, Bcl-10 phosphorylation, IκB-α degradation, and nuclear NF-κB1/p50 levels. Similar defects were observed in Fyn-deficient cells. SLAM engagement amplified PKC-θ recruitment in wt but not SAP- or Fyn-deficient cells, arguing that a SAP/Fyn-mediated pathway enhances PKC-θ/NF-κB1 activation and suggesting a role for this pathway in TH2 regulation

    Acinar Cell Apoptosis in Serpini2-Deficient Mice Models Pancreatic Insufficiency

    Get PDF
    Pancreatic insufficiency (PI) when left untreated results in a state of malnutrition due to an inability to absorb nutrients. Frequently, PI is diagnosed as part of a larger clinical presentation in cystic fibrosis or Shwachman–Diamond syndrome. In this study, a mouse model for isolated exocrine PI was identified in a mouse line generated by a transgene insertion. The trait is inherited in an autosomal recessive pattern, and homozygous animals are growth retarded, have abnormal immunity, and have reduced life span. Mice with the disease locus, named pequeño (pq), exhibit progressive apoptosis of pancreatic acinar cells with severe exocrine acinar cell loss by 8 wk of age, while the islets and ductal tissue persist. The mutation in pq/pq mice results from a random transgene insertion. Molecular characterization of the transgene insertion site by fluorescent in situ hybridization and genomic deletion mapping identified an approximately 210-kb deletion on Chromosome 3, deleting two genes. One of these genes, Serpini2, encodes a protein that is a member of the serpin family of protease inhibitors. Reintroduction of only the Serpini2 gene by bacterial artificial chromosome transgenic complementation corrected the acinar cell defect as well as body weight and immune phenotypes, showing that deletion of Serpini2 causes the pequeño phenotype. Dietary supplementation of pancreatic enzymes also corrected body size, body weight, and immunodeficiency, and increased the life span of Serpini2-deficient mice, despite continued acinar cell loss. To our knowledge, this study describes the first characterized genetic animal model for isolated PI. Genetic complementation of the transgene insertion mutant demonstrates that Serpini2 deficiency directly results in the acinar cell apoptosis, malabsorption, and malnutrition observed in pq/pq mice. The rescue of growth retardation, immunodeficiency, and mortality by either Serpini2 bacterial artificial chromosome transgenic expression or by pancreatic enzyme supplementation demonstrates that these phenotypes are secondary to malnutrition in pq/pq mice

    SAP regulates T cell–mediated help for humoral immunity by a mechanism distinct from cytokine regulation

    Get PDF
    X-linked lymphoproliferative disease is caused by mutations affecting SH2D1A/SAP, an adaptor that recruits Fyn to signal lymphocyte activation molecule (SLAM)-related receptors. After infection, SLAM-associated protein (SAP)−/− mice show increased T cell activation and impaired humoral responses. Although SAP−/− mice can respond to T-independent immunization, we find impaired primary and secondary T-dependent responses, with defective B cell proliferation, germinal center formation, and antibody production. Nonetheless, transfer of wild-type but not SAP-deficient CD4 cells rescued humoral responses in reconstituted recombination activating gene 2−/− and SAP−/− mice. To investigate these T cell defects, we examined CD4 cell function in vitro and in vivo. Although SAP-deficient CD4 cells have impaired T cell receptor–mediated T helper (Th)2 cytokine production in vitro, we demonstrate that the humoral defects can be uncoupled from cytokine expression defects in vivo. Instead, SAP-deficient T cells exhibit decreased and delayed inducible costimulator (ICOS) induction and heightened CD40L expression. Notably, in contrast to Th2 cytokine defects, humoral responses, ICOS expression, and CD40L down-regulation were rescued by retroviral reconstitution with SAP-R78A, a SAP mutant that impairs Fyn binding. We further demonstrate a role for SLAM/SAP signaling in the regulation of early surface CD40L expression. Thus, SAP affects expression of key molecules required for T–B cell collaboration by mechanisms that are distinct from its role in cytokine regulation

    Follicular helper T cells are required for systemic autoimmunity

    Get PDF
    Production of high-affinity pathogenic autoantibodies appears to be central to the pathogenesis of lupus. Because normal high-affinity antibodies arise from germinal centers (GCs), aberrant selection of GC B cells, caused by either failure of negative selection or enhanced positive selection by follicular helper T (TFH) cells, is a plausible explanation for these autoantibodies. Mice homozygous for the san allele of Roquin, which encodes a RING-type ubiquitin ligase, develop GCs in the absence of foreign antigen, excessive TFH cell numbers, and features of lupus. We postulated a positive selection defect in GCs to account for autoantibodies. We first demonstrate that autoimmunity in Roquinsan/san (sanroque) mice is GC dependent: deletion of one allele of Bcl6 specifically reduces the number of GC cells, ameliorating pathology. We show that Roquinsan acts autonomously to cause accumulation of TFH cells. Introduction of a null allele of the signaling lymphocyte activation molecule family adaptor Sap into the sanroque background resulted in a substantial and selective reduction in sanroque TFH cells, and abrogated formation of GCs, autoantibody formation, and renal pathology. In contrast, adoptive transfer of sanroque TFH cells led to spontaneous GC formation. These findings identify TFH dysfunction within GCs and aberrant positive selection as a pathway to systemic autoimmunity
    corecore