5,763 research outputs found

    Nonvolatile memory with molecule-engineered tunneling barriers

    Full text link
    We report a novel field-sensitive tunneling barrier by embedding C60 in SiO2 for nonvolatile memory applications. C60 is a better choice than ultra-small nanocrystals due to its monodispersion. Moreover, C60 provides accessible energy levels to prompt resonant tunneling through SiO2 at high fields. However, this process is quenched at low fields due to HOMO-LUMO gap and large charging energy of C60. Furthermore, we demonstrate an improvement of more than an order of magnitude in retention to program/erase time ratio for a metal nanocrystal memory. This shows promise of engineering tunnel dielectrics by integrating molecules in the future hybrid molecular-silicon electronics.Comment: to appear in Applied Physics Letter

    A Targeted<em> in Vivo</em> SILAC Approach for Quantification of Drug Metabolism Enzymes:Regulation by the Constitutive Androstane Receptor

    Get PDF
    The modulation of drug metabolism enzyme (DME) expression by therapeutic agents is a central mechanism of drug-drug interaction and should be assessed as early as possible in preclinical drug development. Direct measurement of DME levels is typically achieved by Western blotting, qPCR, or microarray, but these techniques have their limitations; antibody cross-reactivity among highly homologous subfamilies creates ambiguity, while discordance between mRNA and protein expression undermines observations. The aim of this study was to design a simple targeted workflow by combining in vivo SILAC and label-free proteomics approaches for quantification of DMEs in mouse liver, facilitating a rapid and comprehensive evaluation of metabolic potential at the protein level. A total of 197 peptides, representing 51 Phase I and Phase II DMEs, were quantified by LC-MS/MS using targeted high resolution single ion monitoring (tHR/SIM) with a defined mass-to-charge and retention time window for each peptide. In a constitutive androstane receptor (Car) activated mouse model, comparison of tHR/SIM-in vivo SILAC with Western blotting for analysis of the expression of cytochromes P450 was favorable, with agreement in fold-change values between methods. The tHR/SIM-in vivo SILAC approach therefore permits the robust analysis of multiple DME in a single protein sample, with clear utility for the assessment of the drug-drug interaction potential of candidate therapeutic compounds. </p

    Multistage Random Growing Small-World Networks with Power-law degree Distribution

    Full text link
    In this paper, a simply rule that generates scale-free networks with very large clustering coefficient and very small average distance is presented. These networks are called {\bf Multistage Random Growing Networks}(MRGN) as the adding process of a new node to the network is composed of two stages. The analytic results of power-law exponent γ=3\gamma=3 and clustering coefficient C=0.81C=0.81 are obtained, which agree with the simulation results approximately. In addition, the average distance of the networks increases logarithmical with the number of the network vertices is proved analytically. Since many real-life networks are both scale-free and small-world networks, MRGN may perform well in mimicking reality.Comment: 3 figures, 4 page

    Reanalysis of the X-ray burst associated FRB 200428 with Insight-HXMT observations

    Full text link
    A double-peak X-ray burst from the Galactic magnetar SGR J1935+2154 was discovered as associated with the two radio pulses of FRB 200428 separated by 28.97+-0.02 ms. Precise measurements of the timing and spectral properties of the X-ray bursts are helpful for understanding the physical origin of fast radio bursts (FRBs). In this paper, we have reconstructed some information about the hard X-ray events, which were lost because the High Energy X-ray Telescope (HE) onboard the Insight-HXMT mission was saturated by this extremely bright burst, and used the information to improve the temporal and spectral analyses of the X-ray burst. The arrival times of the two X-ray peaks by fitting the new Insight-HXMT/HE lightcurve with multi-Gaussian profiles are 2.77+-0.45 ms and 34.30+-0.56 ms after the first peak of FRB 200428, respectively, while these two parameters are 2.57+-0.52 ms and 32.5+-1.4 ms if the fitting profile is a fast rise and exponential decay function. The spectrum of the two X-ray peaks could be described by a cutoff power-law with cutoff energy ~60 keV and photon index ~1.4, the latter is softer than that of the underlying bright and broader X-ray burst when the two X-ray peaks appeared.Comment: 11 pages, 7 figure

    Synthesis of bioorganometallic nanomolar-potent CB2agonists containing a ferrocene unit

    Get PDF
    A small library of ferrocene-containing amides has been synthesized using standard amide coupling chemistry with ferrocenylamine. Ferrocene analogues of known bioactive adamantylamides were shown to be effective cannabinoid receptor (CB1 and CB2) agonists, displaying, in many cases, single-digit nanomolar potency. Three final ferrocene-containing derivatives have been characterized in the solid state by X-ray crystallography and display intramolecular hydrogen bonding of the type NH---C═O. N-Methylation of the amide, confirmed by X-ray crystallography, leads to both loss of hydrogen bonding and biological activity

    Monte-Carlo simulations on possible collimation effects of outflows to fan-beamed emission of ultraluminous accreting X-ray pulsars

    Full text link
    Pulsating ultraluminous X-ray sources (PULXs) are accreting pulsars with apparent X-ray luminosity exceeding 1039erg s110^{39}\, \rm erg\ s^{-1}. We perform Monte-Carlo simulations to investigate whether high collimation effect (or strong beaming effect) is dominant in the presence of accretion outflows, for the fan beam emission of the accretion column of the neutron stars in PULXs. We show that the three nearby PULXs (RX J0209.6-7427, Swift J0243.6+6124 and SMC X-3), namely the three musketeers here, have their main pulsed emission not strongly collimated even if strong outflows exist. This conclusion can be extended to the current sample of extragalactic PULXs, if accretion outflows are commonly produced from them. This means that the observed high luminosity of PULXs is indeed intrinsic, which can be used to infer the existence of very strong surface magnetic fields of 101314\sim10^{13-14} G, possibly multipole fields. However, if strong outflows are launched from the accretion disks in PULXs as a consequence of disk spherization by radiation pressure, regular dipole magnetic fields of 1012\sim10^{12} G may be required, comparable to that of the three musketeers, which have experienced large luminosity changes from well below their Eddington limit (2×1038erg s12\times10^{38}\, \rm erg\ s^{-1} for a NS) to super-Eddington and their maximum luminosity fills the luminosity gap between Galactic pulsars and extragalactic PULXs.Comment: 26 pages, 8 figures, 1 table. Accepted by Ap

    Measurements of branching fraction ratios and CP-asymmetries in suppressed B^- -> D(-> K^+ pi^-)K^- and B^- -> D(-> K^+ pi^-)pi^- decays

    Get PDF
    We report the first reconstruction in hadron collisions of the suppressed decays B^- -> D(-> K^+ pi^-)K^- and B^- -> D(-> K^+ pi^-)pi^-, sensitive to the CKM phase gamma, using data from 7 fb^-1 of integrated luminosity collected by the CDF II detector at the Tevatron collider. We reconstruct a signal for the B^- -> D(-> K^+ pi^-)K^- suppressed mode with a significance of 3.2 standard deviations, and measure the ratios of the suppressed to favored branching fractions R(K) = [22.0 \pm 8.6(stat)\pm 2.6(syst)]\times 10^-3, R^+(K) = [42.6\pm 13.7(stat)\pm 2.8(syst)]\times 10^-3, R^-(K)= [3.8\pm 10.3(stat)\pm 2.7(syst]\times 10^-3, as well as the direct CP-violating asymmetry A(K) = -0.82\pm 0.44(stat)\pm 0.09(syst) of this mode. Corresponding quantities for B^- -> D(-> K^+ pi^-)pi^- decay are also reported.Comment: 8 pages, 1 figure, accepted by Phys.Rev.D Rapid Communications for Publicatio
    corecore