56 research outputs found

    Re-evaluation of the surface ruptures of the November 1951 earthquake series in eastern Taiwan, and its neotectonic implications

    Get PDF
    The earthquakes of November 1951 constitute the most destructive seismic episode in the recorded history of the Longitudinal Valley, eastern Taiwan. However, information about their source parameters is sparse. To understand the relationship between the 1951 ruptures and new interpretations of the regional neotectonic architecture of the Longitudinal Valley, we re-evaluated the November 1951 ruptures by analyzing old documents, reports and photographs, and by interviewing local residents who experienced the earthquake. As a result, we have revised significantly the rupture map previously published. We divide the surface ruptures from south to north into the Chihshang, Yuli, and Rueisuei sections. The first shock of the 1951 series probably resulted from the Chihshang rupture, and the second shock probably resulted from the Yuli and Rueisuei ruptures. The lengths of these ruptures indicate that the two shocks had similar magnitudes. The Chihshang and Rueisuei ruptures are along segments of the Longitudinal Valley fault, a left-lateral oblique fault along which the Coastal Range thrusts westward over the Longitudinal Valley. The Yuli rupture, on the other hand, appears to be part of a separate, left-lateral strike-slip Yuli fault, which traverses the middle of the Longitudinal Valley. The complex behavior of these structures and interaction between them are important in understanding the future seismic hazard of the area

    Millennial slip rate of the Longitudinal Valley fault from river terraces: Implications for convergence across the active suture of eastern Taiwan

    Get PDF
    The Longitudinal Valley fault is a key element in the active tectonics of Taiwan. It is the principal structure accommodating convergence across one of the two active sutures of the Taiwan orogeny. To understand more precisely its role in the suturing process, we analyzed fluvial terraces along the Hsiukuluan River, which cuts across the Coastal Range in eastern Taiwan in the fault's hanging wall block. This allowed us to determine both its subsurface geometry and its long-term slip rate. The uplift pattern of the terraces is consistent with a fault-bend fold model. Our analysis yields a listric geometry, with dips decreasing downdip from about 50° to about 30° in the shallowest 2.5 km. The Holocene rate of dip slip of the fault is about 22.7 mm/yr. This rate is less than the 40 mm/yr rate of shortening across the Longitudinal Valley derived from GPS measurements. The discrepancy may reflect an actual difference in millennial and decadal rates of convergence. An alternative explanation is that the discrepancy is accommodated by a combination of slip on the Central Range fault and subsidence of the Longitudinal Valley floor. The shallow, listric geometry of the Longitudinal Valley fault at the Hsiukuluan River valley differs markedly from the deep listric geometry illuminated by earthquake hypocenters near Chihshang, 45 km to the south. We hypothesize that this fundamental along-strike difference in geometry of the fault is a manifestation of the northward maturation of the suturing of the Luzon volcanic arc to the Central Range continental sliver

    Erosion influences the seismicity of active thrust faults

    Get PDF
    International audienceAssessing seismic hazards remains one of the most challenging scientific issues in Earthsciences. Deep tectonic processes are classically considered as the only persistentmechanism driving the stress loading of active faults over a seismic cycle. Here we show via amechanical model that erosion also significantly influences the stress loading of thrust faultsat the timescale of a seismic cycle. Indeed, erosion rates of about B0.1–20mmyr1, asdocumented in Taiwan and in other active compressional orogens, can raise the Coulombstress by B0.1–10 bar on the nearby thrust faults over the inter-seismic phase. Masstransfers induced by surface processes in general, during continuous or short-lived andintense events, represent a prominent mechanism for inter-seismic stress loading offaults near the surface. Such stresses are probably sufficient to trigger shallow seismicity orpromote the rupture of deep continental earthquakes up to the surface

    A New On-Land Seismogenic Structure Source Database from the Taiwan Earthquake Model (TEM) Project for Seismic Hazard Analysis of Taiwan

    Full text link
    Taiwan is located at an active plate boundary and prone to earthquake hazards. To evaluate the island’s seismic risk, the Taiwan Earthquake Model (TEM) project, supported by the Ministry of Sciences and Technology, evaluates earthquake hazard, risk, and related social and economic impact models for Taiwan through multidisciplinary collaboration. One of the major tasks of TEM is to construct a complete and updated seismogenic structure database for Taiwan to assess future seismic hazards. Toward this end, we have combined information from pre-existing databases and data obtained from new analyses to build an updated and digitized three-dimensional seismogenic structure map for Taiwan. Thirty-eight on-land active seismogenic structures are identified. For detailed information of individual structures such as their long-term slip rates and potential recurrence intervals, we collected data from existing publications, as well as calculated from results of our own field surveys and investigations. We hope this updated database would become a significant constraint for seismic hazard assessment calculations in Taiwan, and would provide important information for engineers and hazard mitigation agencies

    Tectonic Implication of the 5th March 2005, Doublet Earthquake in Ilan, Taiwan

    Full text link
    The 5th March 2005 earthquake doublet focal mechanism was determined as strike-slip faulting from Harvard and BATS moment tensor inversion. However, based on first motion polarities, the first shock has a normal focal mechanism (Wu et al. 2008a). This discrepancy has caused a debate over the focal mechanism solution because different focal mechanisms have different tectonic implications. Based on the dislocation determination from Global Position System (GPS) measurements, we find this event includes both tensile and strike-slip components. This finding illustrates the reason for the differences in the determined focal mechanisms using two different types of seismic data and analyzing methods. Field mapping and microstructure examination results indicate that the ductile deformation around the study area was characterized by the evolution from transpression to transtension with a predominant strike-slip component, but present-day active structures may be dominated by normal faulting. Thus, the active tensile slip result determined from dislocation modeling strongly suggests that the back arc extension of the Okinawa trough influences the stress state in this region, and changes the major transtension from strike-slip faulting to normal faulting

    Coseismic thrusting and folding in the 1999 M_w 7.6 Chi-Chi earthquake: A high-resolution approach by aerial photos taken from Tsaotun, central Taiwan

    Get PDF
    We used aerial photos taken before and after the 21 September 1999, M_w 7.6, Chi-Chi earthquake in central Taiwan to measure the near-field ground deformation. A total of 12 pairs of images were processed with Co-registration of Optically Sensed Images and Correlation to produce a horizontal displacement map of a 10 km × 10 km area near Tsaotun. Using pairs of images with different viewing angles, both the horizontal and vertical slip across the fault zone can be measured. Our measurements when resampled into lower resolution are consistent with lower resolution measurements of horizontal displacements obtained from SPOT images, as well as with vertical displacements obtained from repeated leveling measurements and field observations. Horizontal strain is strongly localized along the Chelungpu fault (CLPF) and along a secondary scarp that runs parallel to the CLPF about 2 km to the east, the Ailiao fold scarp (ALF). This pattern closely matches the surface ruptures mapped in the field. Horizontal strain across CLPF correlates remarkably well with the topographic features produced by long-term deformation. The cumulative horizontal shortening across the CLPF and ALF amounts to 4.9 ± 0.4 and 6.1 ± 0.6 m, respectively, and fault-parallel displacement is 3.4 ± 0.4 m. The pattern of surface strain is consistent with the interpretation of the ALF as a fold scarp formed over an active axial hinge zone. This study shows that, even in this compressional setting, most surface deformation is localized within narrow fault zones or active axial hinges

    Geomorphology of the southernmost Longitudinal Valley fault: Implications for evolution of the active suture of eastern Taiwan

    Get PDF
    In order to understand fully the deformational patterns of the Longitudinal Valley fault system, a major structure along the eastern suture of Taiwan, we mapped geomorphic features near the southern end of the Longitudinal Valley, where many well‐developed fluvial landforms record deformation along multiple strands of the fault. Our analysis shows that the Longitudinal Valley fault there comprises two major strands. The Luyeh strand, on the west, has predominantly reverse motion. The Peinan strand, on the east, has a significant left‐lateral component. Between the two strands, late Quaternary fluvial sediments and surfaces exhibit progressive deformation. The Luyeh strand dies out to the north, where it steps to the east and joins the Peinan strand to become the main strand of the reverse sinistral Longitudinal Valley fault. To the south, the Luyeh strand becomes an E‐W striking monocline. This suggests that the reverse motion on the Longitudinal Valley system decreases drastically at that point. The Longitudinal Valley fault system is therefore likely to terminate abruptly there and does not seem to connect to any existing structure further to the south. This abrupt structural change suggests that the development of the Longitudinal Valley suture occurs through discrete structural “jumps,” rather than by a continuous northward maturation

    Interseismic Deformation and Earthquake Hazard along the Southernmost Longitudinal Valley Fault, Eastern Taiwan

    Get PDF
    About half of the 8  cm/yr of oblique convergence across the active convergent plate boundaries of Taiwan occurs in eastern Taiwan, across the Longitudinal Valley. Significant shortening and left‐lateral slip occurs across the Longitudinal Valley fault there, both as shallow fault creep and as seismogenic fault slip. The southernmost Longitudinal Valley fault comprises an eastern Peinan strand and a western Luyeh strand. We derive an interseismic block model for these two strands using data from a small‐aperture Global Positioning System (GPS) campaign and leveling. The model provides estimates of fault slip rates and quantifies slip partitioning between the two strands. A 45  mm/yr dip‐slip rate on the northern Peinan strand diminishes southward, whereas the left‐lateral component increases. In contrast, nearly pure dip‐slip motion of about 20  mm/yr on the southern Luyeh strand diminishes northward to about 8  mm/yr and picks up a component of left‐lateral motion of about 15  mm/yr before it dies out altogether at its northern terminus. The Luyeh and the northern Peinan strands record near‐surface creep, but the southern Peinan strand appears locked. The potential earthquake magnitude for the two strands may be as high as M_w 6.5. We anticipate seismic rupture mainly on the locked portion of the Peinan strand

    The effect of illustrations on patient comprehension of medication instruction labels

    Get PDF
    BACKGROUND: Labels with special instructions regarding how a prescription medication should be taken or its possible side effects are often applied to pill bottles. The goal of this study was to determine whether the addition of illustrations to these labels affects patient comprehension. METHODS: Study participants (N = 130) were enrolled by approaching patients at three family practice clinics in Toronto, Canada. Participants were asked to interpret two sets of medication instruction labels, the first with text only and the second with the same text accompanied by illustrations. Two investigators coded participants' responses as incorrect, partially correct, or completely correct. Health literacy levels of participants were measured using a validated instrument, the REALM test. RESULTS: All participants gave a completely correct interpretation for three out of five instruction labels, regardless of whether illustrations were present or not. For the two most complex labels, only 34–55% of interpretations of the text-only version were completely correct. The addition of illustrations was associated with improved performance in 5–7% of subjects and worsened performance in 7–9% of subjects. CONCLUSION: The commonly-used illustrations on the medication labels used in this study were of little or no use in improving patients' comprehension of the accompanying written instructions
    corecore