936 research outputs found

    Spin dynamics and disorder effects in the S=1/2 kagome Heisenberg spin liquid phase of kapellasite

    Full text link
    We report 35^{35}Cl NMR, ESR, μ\muSR and specific heat measurements on the S=1/2S=1/2 frustrated kagom\'e magnet kapellasite, α−\alpha-Cu3_3Zn(OH)6_6Cl2_2, where a gapless spin liquid phase is stabilized by a set of competing exchange interactions. Our measurements confirm the ferromagnetic character of the nearest-neighbour exchange interaction J1J_1 and give an energy scale for the competing interactions ∣J∣∼10|J| \sim 10 K. The study of the temperature-dependent ESR lineshift reveals a moderate symmetric exchange anisotropy term DD, with ∣D/J∣∼3|D/J|\sim 3%. These findings validate a posteriori the use of the J1−J2−JdJ_1 - J_2 - J_d Heisenberg model to describe the magnetic properties of kapellasite [Bernu et al., Phys. Rev. B 87, 155107 (2013)]. We further confirm that the main deviation from this model is the severe random depletion of the magnetic kagom\'e lattice by 27%, due to Cu/Zn site mixing, and specifically address the effect of this disorder by 35^{35}Cl NMR, performed on an oriented polycrystalline sample. Surprisingly, while being very sensitive to local structural deformations, our NMR measurements demonstrate that the system remains homogeneous with a unique spin susceptibility at high temperature, despite a variety of magnetic environments. Unconventional spin dynamics is further revealed by NMR and μ\muSR in the low-TT, correlated, spin liquid regime, where a broad distribution of spin-lattice relaxation times is observed. We ascribe this to the presence of local low-energy modes.Comment: 15 pages, 11 figures. To appear in Phys. Rev.

    Transmission of pillar-based photonic crystal waveguides in InP technology

    Get PDF
    Waveguides based on line defects in pillar photonic crystals have been fabricated in InP/InGaAsP/InP technology. Transmission measurements of different line defects are reported. The results can be explained by comparison with two-dimensional band diagram simulations. The losses increase substantially at mode crossings and in the slow light regime. The agreement with the band diagrams implies a good control on the dimensions of the fabricated features, which is an important step in the actual application of these devices in photonic integrated circuit

    Decreased functional connectivity of the insula within the salience network as an indicator for prospective insufficient response to antidepressants

    Get PDF
    Insufficient response to treatment is the main cause of prolonged suffering from major depressive disorder (MDD). Early identification of insufficient response could result in faster and more targeted treatment strategies to reduce suffering. We therefore explored whether baseline alterations within and between resting state functional connectivity networks could serve as markers of insufficient response to antidepressant treatment in two years of follow-up. We selected MDD patients (N = 17) from the NEtherlands Study of Depression and Anxiety (NESDA), who received ≥ two antidepressants, indicative for insufficient response, during the two year follow-up, a group of MDD patients who received only one antidepressant (N = 32) and a healthy control group (N = 19) matched on clinical characteristics and demographics. An independent component analysis (ICA) of baseline resting-state scans was conducted after which functional connectivity within the components was compared between groups. We observed lower connectivity of the right insula within the salience network in the group with ≥ two antidepressants compared to the group with one antidepressant. No difference in connectivity was found between the patient groups and healthy control group. Given the suggested role of the right insula in switching between task-positive mode (activation during attention-demanding tasks) and task-negative mode (activation during the absence of any task), we explored whether right insula activation differed during switching between these two modes. We observed that in the ≥2 antidepressant group, the right insula was less active compared to the group with one antidepressant, when switching from task-positive to task-negative mode than the other way around. These findings imply that lower right insula connectivity within the salience network may serve as an indicator for prospective insufficient response to antidepressants. This result, supplemented by the diminished insula activation when switching between task and rest related networks, could indicate an underlying mechanism that, if not sufficiently targeted by current antidepressants, could lead to insufficient response. When replicated, these findings may contribute to the identification of biomarkers for early detection of insufficient response

    Spin dynamics and disorder effects in the S = 1/2 kagome Heisenberg spin liquid phase of kapellasite

    Get PDF
    International audienceWe report 35 Cl NMR, ESR, µSR and specific heat measurements on the S = 1/2 frustrated kagomé magnet kapellasite, α−Cu3Zn(OH)6Cl2, where a gapless spin liquid phase is stabilized by a set of competing exchange interactions. Our measurements confirm the ferromagnetic character of the nearest-neighbour exchange interaction J1 and give an energy scale for the competing interactions |J| ∼ 10 K. The study of the temperature-dependent ESR lineshift reveals a moderate symmetric exchange anisotropy term D, with |D/J| ∼ 3 %. These findings validate a posteriori the use of the J1 − J2 − J d Heisenberg model to describe the magnetic properties of kapellasite [Bernu et al., Phys. Rev. B 87, 155107 (2013)]. We further confirm that the main deviation from this model is the severe random depletion of the magnetic kagomé lattice by 27%, due to Cu/Zn site mixing, and specifically address the effect of this disorder by 35 Cl NMR, performed on an oriented polycrystalline sample. Surprisingly, while being very sensitive to local structural deformations, our NMR measurements demonstrate that the system remains homogeneous with a unique spin susceptibility at high temperature, despite a variety of magnetic environments. Unconventional spin dynamics is further revealed by NMR and µSR in the low-T , correlated, spin liquid regime, where a broad distribution of spin-lattice relaxation times is observed. We ascribe this to the presence of local low energy modes

    Spin dynamics and disorder effects in the S = 1/2 kagome Heisenberg spin liquid phase of kapellasite

    Get PDF
    International audienceWe report 35 Cl NMR, ESR, µSR and specific heat measurements on the S = 1/2 frustrated kagomé magnet kapellasite, α−Cu3Zn(OH)6Cl2, where a gapless spin liquid phase is stabilized by a set of competing exchange interactions. Our measurements confirm the ferromagnetic character of the nearest-neighbour exchange interaction J1 and give an energy scale for the competing interactions |J| ∼ 10 K. The study of the temperature-dependent ESR lineshift reveals a moderate symmetric exchange anisotropy term D, with |D/J| ∼ 3 %. These findings validate a posteriori the use of the J1 − J2 − J d Heisenberg model to describe the magnetic properties of kapellasite [Bernu et al., Phys. Rev. B 87, 155107 (2013)]. We further confirm that the main deviation from this model is the severe random depletion of the magnetic kagomé lattice by 27%, due to Cu/Zn site mixing, and specifically address the effect of this disorder by 35 Cl NMR, performed on an oriented polycrystalline sample. Surprisingly, while being very sensitive to local structural deformations, our NMR measurements demonstrate that the system remains homogeneous with a unique spin susceptibility at high temperature, despite a variety of magnetic environments. Unconventional spin dynamics is further revealed by NMR and µSR in the low-T , correlated, spin liquid regime, where a broad distribution of spin-lattice relaxation times is observed. We ascribe this to the presence of local low energy modes

    First LOFAR observations at very low frequencies of cluster-scale non-thermal emission: the case of Abell 2256

    Get PDF
    Abell 2256 is one of the best known examples of a galaxy cluster hosting large-scale diffuse radio emission that is unrelated to individual galaxies. It contains both a giant radio halo and a relic, as well as a number of head-tail sources and smaller diffuse steep-spectrum radio sources. The origin of radio halos and relics is still being debated, but over the last years it has become clear that the presence of these radio sources is closely related to galaxy cluster merger events. Here we present the results from the first LOFAR Low band antenna (LBA) observations of Abell 2256 between 18 and 67 MHz. To our knowledge, the image presented in this paper at 63 MHz is the deepest ever obtained at frequencies below 100 MHz in general. Both the radio halo and the giant relic are detected in the image at 63 MHz, and the diffuse radio emission remains visible at frequencies as low as 20 MHz. The observations confirm the presence of a previously claimed ultra-steep spectrum source to the west of the cluster center with a spectral index of -2.3 \pm 0.4 between 63 and 153 MHz. The steep spectrum suggests that this source is an old part of a head-tail radio source in the cluster. For the radio relic we find an integrated spectral index of -0.81 \pm 0.03, after removing the flux contribution from the other sources. This is relatively flat which could indicate that the efficiency of particle acceleration at the shock substantially changed in the last \sim 0.1 Gyr due to an increase of the shock Mach number. In an alternative scenario, particles are re-accelerated by some mechanism in the downstream region of the shock, resulting in the relatively flat integrated radio spectrum. In the radio halo region we find indications of low-frequency spectral steepening which may suggest that relativistic particles are accelerated in a rather inhomogeneous turbulent region.Comment: 13 pages, 13 figures, accepted for publication in A\&A on April 12, 201

    Spatio-Temporal Convergence of Maximum Daily Light-Use Efficiency Based on Radiation Absorption by Canopy Chlorophyll

    Get PDF
    Light-use efficiency (LUE), which quantifies the plants' efficiency in utilizing solar radiation for photosynthetic carbon fixation, is an important factor for gross primary production estimation. Here we use satellite-based solar-induced chlorophyll fluorescence as a proxy for photosynthetically active radiation absorbed by chlorophyll (APAR ) and derive an estimation of the fraction of APAR (fPAR ) from four remotely sensed vegetation indicators. By comparing maximum LUE estimated at different scales from 127 eddy flux sites, we found that the maximum daily LUE based on PAR absorption by canopy chlorophyll (ε ), unlike other expressions of LUE, tends to converge across biome types. The photosynthetic seasonality in tropical forests can also be tracked by the change of fPAR , suggesting the corresponding (ε ) to have less seasonal variation. This spatio-temporal convergence of LUE derived from fPAR can be used to build simple but robust gross primary production models and to better constrain process-based models. chl chl chl max chl max chl chl ch
    • …
    corecore