353 research outputs found

    From invasion percolation to flow in rock fracture networks

    Full text link
    The main purpose of this work is to simulate two-phase flow in the form of immiscible displacement through anisotropic, three-dimensional (3D) discrete fracture networks (DFN). The considered DFNs are artificially generated, based on a general distribution function or are conditioned on measured data from deep geological investigations. We introduce several modifications to the invasion percolation (MIP) to incorporate fracture inclinations, intersection lines, as well as the hydraulic path length inside the fractures. Additionally a trapping algorithm is implemented that forbids any advance of the invading fluid into a region, where the defending fluid is completely encircled by the invader and has no escape route. We study invasion, saturation, and flow through artificial fracture networks, with varying anisotropy and size and finally compare our findings to well studied, conditioned fracture networks.Comment: 18 pages, 10 figure

    A ratiometric-based measure of gene co-expression

    Get PDF
    Background: Gene co-expression analysis has previously been based on measures that include correlation coefficients and mutual information, as well as newcomers such as MIC. These measures depend primarily on the degree of association between the RNA levels of two genes and to a lesser extent on their variability. They focus on the similarity of expression value trajectories that change in like manner across samples. However there are relationships of biological interest for which these classical measures are expected to be insensitive. These include genes whose expression levels are ratiometrically stable and genes whose variance is tightly constrained. Large-scale studies of relatively homogeneous samples, including single cell RNA-seq, are experimental settings in which such relationships might be especially pertinent. Results: We develop and implement a ratiometric approach for detecting gene associations (abbreviated RA). It is based on the coefficient of variation of the measured expression ratio of each pair of genes. We apply it to a collection of lymphoblastoid RNA-seq data from the 1000 Genomes Project Consortium, a typical sample set with high overall homogeneity. RA is a selective method, reporting in this case ~1/4 of all possible gene pairs, yet these relationships include a distilled picture of biological relationships previously found by other methods. In addition, RA reveals expression relationships that are not detected by traditional correlation and mutual information methods. We also analyze data from individual lymphoblastoid cells and show that desirable properties of the RA method extend to single-cell RNA-seq. Conclusion: We show that our ratiometric method identifies biologically significant relationships that are often missed or low-ranked by conventional association-based methods when applied to a relatively homogenous dataset. The results open new questions about the regulatory mechanisms that produce strong RA relationships. RA is scalable and potentially well suited for the analysis of thousands of bulk-RNA or single-cell transcriptomes

    Common ground in collaborative intelligence analysis: an empirical study

    Get PDF
    This paper reports an empirical exploration of how different configurations of collaboration technology affect peoples’ ability to construct and maintain common ground while conducting collaborative intelligence analysis work. Prior studies of collaboration technology have typically focused on simpler conversational tasks, or ones that involve physical manipulation, rather than the complex sensemaking and inference involved in intelligence work. The study explores the effects of video communication and shared visual workspace (SVW) on the negotiation of common ground by distributed teams collaborating in real time on intelligence analysis tasks. The experimental study uses a 2x2 factorial, between-subjects design involving two independent variables: presence or absence of Video and SVW. Two-member teams were randomly assigned to one of the four experimental media conditions and worked to complete several intelligence analysis tasks involving multiple, complex intelligence artefacts. Teams with access to the shared visual workspace could view their teammates’ eWhiteboards. Our results demonstrate a significant effect for the shared visual workspace: the effort of conversational grounding is reduced in the cases where SVW is available. However, there were no main effects for video and no interaction between the two variables. Also, we found that the “conversational grounding effort” required tended to decrease over the course of the tas

    Thyroid control over biomembranes: VI. Lipids in liver mitochondria and microsomes of hypothyroid rats

    Full text link
    The lipids of liver mitochondria prepared from normal rats and from rats made hypothyroid by thyroidectomy and injection with131INa contained similar amounts, per mg protein, of total lipids, phospholipids, neutral lipids and lipid phosphorus. Hypothyroidism caused a doubling of the relative amounts of mitochondrial cardiolipins (CL; to 20.5% of the phospholipid P) and an accompanying trend (although statistically not significant) toward decreased amounts of both phosphatidylcholines (PC) and phosphatidylserines (PS), with phosphatidylethanolamines (PE) remaining unchanged. The pattern of elevated 18∶2 fatty acyl content and depleted 20∶4 acyl groups of the mitochondrial phospholipids of hypothyroid preparations was reflected to varying degrees in the resolved phospholipids, with PC showing greater degrees of abnormality than PE, and CL showing none. Hypothyroidism produced the same abnormal pattern of fatty acyl distributions in liver microsomal total lipids as was found in the mitochondria. Hypothyroid rats, when killed 6 hr after injection of [1‐14C] labeled linoleate, showed the following abnormalities: the liver incorporated less label into lipids, and converted 18∶2 not exclusively to 20∶4 (as normals do) but instead incorporated the label mainly into saturated fatty acids. These data, together with the known decrease in β‐oxidation, suggest that hypothyroidism involves possible defective step(s) in the conversion of 18∶2 to 20∶4.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142296/1/lipd0328.pd

    Hydrodynamic coupling in microbially mediated fracture mineralization : formation of self-organized groundwater flow channels

    Get PDF
    Evidence of fossilized microorganisms embedded within mineral veins and mineral-filled fractures has been observed in a wide range of geological environments. Microorganisms can act as sites for mineral nucleation and also contribute to mineral precipitation by inducing local geochemical changes. In this study, we explore fundamental controls on microbially induced mineralization in rock fractures. Specifically, we systematically investigate the influence of hydrodynamics (velocity, flow rate, aperture) on microbially mediated calcite precipitation. Our experimental results demonstrate that a feedback mechanism exists between the gradual reduction in fracture aperture due to precipitation, and its effect on the local fluid velocity. This feedback results in mineral fill distributions that focus flow into a small number of self-organizing channels that remain open, ultimately controlling the final aperture profile that governs flow within the fracture. This hydrodynamic coupling can explain field observations of discrete groundwater flow channeling within fracture-fill mineral geometries where strong evidence of microbial activity is reported

    Mitigating effects of vaccination on influenza outbreaks given constraints in stockpile size and daily administration capacity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Influenza viruses are a major cause of morbidity and mortality worldwide. Vaccination remains a powerful tool for preventing or mitigating influenza outbreaks. Yet, vaccine supplies and daily administration capacities are limited, even in developed countries. Understanding how such constraints can alter the mitigating effects of vaccination is a crucial part of influenza preparedness plans. Mathematical models provide tools for government and medical officials to assess the impact of different vaccination strategies and plan accordingly. However, many existing models of vaccination employ several questionable assumptions, including a rate of vaccination <it>proportional </it>to the population at each point in time.</p> <p>Methods</p> <p>We present a SIR-like model that explicitly takes into account vaccine supply and the <it>number </it>of vaccines administered per day and places data-informed limits on these parameters. We refer to this as the <it>non-proportional </it>model of vaccination and compare it to the proportional scheme typically found in the literature.</p> <p>Results</p> <p>The proportional and non-proportional models behave similarly for a few different vaccination scenarios. However, there are parameter regimes involving the vaccination campaign duration and daily supply limit for which the non-proportional model predicts smaller epidemics that peak later, but may last longer, than those of the proportional model. We also use the non-proportional model to predict the mitigating effects of variably timed vaccination campaigns for different levels of vaccination coverage, using specific constraints on daily administration capacity.</p> <p>Conclusions</p> <p>The non-proportional model of vaccination is a theoretical improvement that provides more accurate predictions of the mitigating effects of vaccination on influenza outbreaks than the proportional model. In addition, parameters such as vaccine supply and daily administration limit can be easily adjusted to simulate conditions in developed and developing nations with a wide variety of financial and medical resources. Finally, the model can be used by government and medical officials to create customized pandemic preparedness plans based on the supply and administration constraints of specific communities.</p

    Die Stoffwechselwirkungen der Schilddrüsenhormone

    Get PDF

    MHC class I–associated phosphopeptides are the targets of memory-like immunity in Leukemia

    Get PDF
    Deregulation of signaling pathways involving phosphorylation is a hallmark of malignant transformation. Degradation of phosphoproteins generates cancer-specific phosphopeptides that are associated with MHC-I and II molecules and recognized by T-cells. We identified 95 phosphopeptides presented on the surface of primary hematological tumors and normal tissues, including 61 that were tumor-specific. Phosphopeptides were more prevalent on more aggressive and malignant samples. CD8 T-cell lines specific for these phosphopeptides recognized and killed both leukemia cell lines and HLA-matched primary leukemia cells ex vivo. Healthy individuals showed surprisingly high levels of CD8 T-cell responses against many of these phosphopeptides within the circulating memory compartment. This immunity was significantly reduced or absent in some leukemia patients, which correlated with clinical outcome, and was restored following allogeneic stem cell transplantation. These results suggest that phosphopeptides may be targets of cancer immune surveillance in humans, and point to their importance for development of vaccine-based and T-cell adoptive transfer immunotherapies.
    corecore