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[1] Evidence of fossilized microorganisms embedded within mineral veins and mineral-
filled fractures has been observed in a wide range of geological environments.
Microorganisms can act as sites for mineral nucleation and also contribute to mineral
precipitation by inducing local geochemical changes. In this study, we explore fundamental
controls on microbially induced mineralization in rock fractures. Specifically, we
systematically investigate the influence of hydrodynamics (velocity, flow rate, and aperture)
on microbially mediated calcite precipitation. Our experimental results demonstrate that a
feedback mechanism exists between the gradual reduction in fracture aperture due to
precipitation, and its effect on the local fluid velocity. This feedback results in mineral-fill
distributions that focus flow into a small number of self-organizing channels that remain
open, ultimately controlling the final aperture profile that governs flow within the fracture.
This hydrodynamic coupling can explain field observations of discrete groundwater flow
channeling within fracture-fill mineral geometries where strong evidence of microbial
activity is reported.

Citation: El Mountassir, G., R. J. Lunn, H. Moir, and E. MacLachlan (2014), Hydrodynamic coupling in microbially mediated fracture

mineralization: Formation of self-organized groundwater flow channels, Water Resour. Res., 50, 1–16, doi :10.1002/2013WR013578.

1. Introduction

[2] Microorganisms are known to mediate many
geochemical processes [Konhauser, 2007; Gadd, 2010]
and given the wide variation in composition of bulk fluid in
different geological environments, microbes can induce
precipitation of a whole range of different mineral precipi-
tates including metal oxides, carbonates, phosphates, sul-
fates, and sulfides [Gollapudi et al., 1995; Konhauser,
2007]. Microbes are abundant in groundwater and geologi-
cal media, and have even been found in rocks at depth
where energy sources are sparse [e.g., Brown et al., 1994;
Pedersen et al., 1996, 1997]. In hard rock environments,
mineral precipitation is commonly observed in discontinu-
ities at all scales, from mineralization in faults and fracture
zones, to individual discrete fractures, fissures, and joints
[e.g., Segall and Pollard, 1983; Heath, 1985], and hence
plays a significant role in controlling fluid flow at depth.
[3] Evidence of fossilized microorganisms embedded

within mineral-filled fractures has been observed in calcite
precipitates formed at depth: in calcite-filled veins in

Devonian rocks [Trewin and Knoll, 1999], in fractures in
a Jurassic oolitic limestone [Rubert et al., 2009], and in
fractures in diorite sampled at 450 m depth [Heim et al.,
2012]. Microorganisms can act as chemically reactive
sites for the sorption of metal ions due to negative charges
on their cell surfaces, which can then lead to nucleation
and mineral precipitation [Beveridge and Doyle, 1989;
Konhauser, 2007; Gadd, 2010]. Microorganisms can also
play a more critical role by creating the local geochemical
conditions necessary for mineral precipitation to occur,
for example, by increasing pH leading to increased min-
eral saturation and subsequent precipitation [Mitchell and
Ferris, 2006]. Pedersen et al. [1997] present evidence of
fossilized microbes embedded within calcite precipitate
coating a granodiorite fracture surface, sampled from a
depth of 207 m. Stable isotope analysis shows that the
bicarbonate was biogenically produced, indicating strong
microbial involvement in the precipitation process. Budai
et al. [2002] also present evidence of bacterial processes
(methane generation and oxidation) contributing to calcite
precipitation within filled fractures in the Devonian
Antrim Shale, USA, based on unusually high and unusu-
ally low values of d13C.
[4] As well as interest in natural systems, there is motiva-

tion to understand biogeochemical processes for the purpose
of engineering alterations in the subsurface. Microbially
induced calcite precipitation has been relatively well studied
in this regard; for soil stabilization [DeJong et al., 2006;
Whiffin et al., 2007 ; Van Paassen et al., 2010; Harkes et al.,
2010], for enhanced oil recovery [Ferris et al., 1996], for
CO2 sequestration [Cunningham et al., 2009; Mitchell et al.,
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2010; Phillips et al., 2013], for solid-phase capture of con-
taminants [Fujita et al., 2008], for repairing microcracks in
concrete [Bang et al., 2001; Van Tittelboom et al., 2010; De
Muynck et al., 2010] and for permeability reduction in frac-
tured rock [Cuthbert et al., 2013]. A common feature of
these engineered studies is the need for periods of no flow,
which promote bacterial attachment and calcite precipita-
tion. One study using a flowing system [Stoner et al., 2005]
showed that calcite precipitation is also enhanced in regions
with very low fluid velocities.
[5] The objective of this study was to investigate the

influence of hydraulic controls (velocity, flow rate, aper-
ture) on the spatial distribution of microbially mediated
mineral precipitation within fractures using flocculated bac-
teria. Flocculation of bacteria was induced resulting in
microbial suspensions with a range of floc sizes from single
cells up to larger flocs. A case study of microbially induced
calcite precipitation was used, as a model biomineralization
system. This study contributes to a deeper understanding of
the fundamental controls on microbially mediated mineral
precipitation, which is important for the further advance-
ment of fracture flow models and the potential development
of engineered biomineralization strategies.

2. Microbially Induced Calcite Precipitation

[6] The biomineralization process investigated in this
study is microbially induced calcite precipitation via urea
(CO(NH2)2) hydrolysis. This process relies on a bacterium
hydrolyzing urea into ammonia and carbonic acid (equation
(1)). This is followed by the production of ammonium ions
and an increase in the pH surrounding the bacterial cell,
due to the net production of OH2 ions (equation (2)). As
the pH increases, carbonic acid (H2CO3) is converted to
bicarbonate ions (HCO3

2) (equation (3)), subsequently
forming carbonate ions (CO3

22) (equation (4)). In the pres-
ence of calcium ions, the increase in pH promotes the pre-
cipitation of calcium carbonate (CaCO3) (equation (5))
[Ferris et al., 1992, 1996; Mitchell et al., 2010].

CO NH 2ð Þ21 2H 2O! 2NH 31 H 2CO 3 urea hydrolysisð Þ (1)

2NH 312H 2O$ 2NH 4
1
1 2OH2 pH increaseð Þ (2)

H2CO 312OH
2 $ HCO 3

2
1H2O1OH

2 (3)

HCO 3
2
1H2O1OH

2 $ CO 3
22

12H 2O (4)

Ca 211CO 3
22 ! CaCO 3 sð Þ calcite precipitationð Þ (5)

[7] Sporosarcina pasteurii (S. pasteurii, strain ATCC
11859), a gram-positive, spore-forming, ureolytic bacterium
was used in this study to induce calcite precipitation as this
model bacterium has been well studied in the laboratory
[e.g., Gollapudi et al., 1995; Ferris et al., 2003; Mitchell
and Ferris, 2006; Whiffin et al., 2007; Tobler et al., 2011].
[8] The rate of calcite (CaCO3) precipitation is controlled

by four main parameters; the calcium concentration, the con-
centration of dissolved inorganic carbon (DIC) as produced
by ureolysis (equations (1–5)), the pH, and the availability of
nucleation sites [Hammes and Verstraete, 2002]. CaCO3 pre-
cipitation requires the presence of sufficient calcium and car-
bonate ions such that the ion activity product (IAP) exceeds

the solubility constant (Kso) leading to the solution becoming
supersaturated with respect to calcium carbonate. The con-
centration of carbonate ions is related to the concentration of
DIC and the pH of the environment. Microbial metabolic
activity influences both these factors, as well as the bacteria
providing nucleation sites [DeMuynck et al., 2010].
[9] Classical nucleation theory assumes that nucleation on

surfaces (termed ‘‘heterogeneous nucleation’’) is energeti-
cally more favorable than nucleation within a uniform phase
(termed ‘‘homogeneous nucleation’’) [Cheong et al., 2013].
Microbial cell surfaces are thought to reduce the nucleation
activation energy barrier, which must be overcome for nucle-
ation by providing chemically reactive sites for sorption
[Ferris et al., 2003; Gadd, 2010]. S. pasteurii is a gram-
positive bacterium; its cell walls are composed of peptidogly-
can with secondary polymers of teichoic acids, which give
rise to electronegative charges on the cell surface [Schultze-
Lam et al., 1996]. These negative charges attract positively
charged ions (cations), such as calcium ions. Once the cation
has complexed with the bacterial cell, it can serve as a nuclea-
tion site, enabling calcite mineralization on the cell surface
[Schultze-Lam et al., 1996; Stocks-Fischer et al., 1999].
[10] Homogeneous nucleation is also known to occur in

solutions where geochemical changes have been induced
by S. pasteurii. Mitchell and Ferris [2006] demonstrated
that calcite crystals were precipitated in both bacteria-
inclusive and bacteria-free environments, which had access
to the same artificial groundwater solution (the two envi-
ronments were separated by a cellulose dialysis mem-
brane). This study highlighted that nucleation of calcite can
proceed in the absence of S. pasteurii, although their pres-
ence in the bacteria-inclusive solution increased both the
size and size variance of the resulting crystals, and led to a
greater crystal growth rate throughout the experiments, rel-
ative to the bacteria-free solution.
[11] In this study, the influence of hydraulic controls on

the spatial distribution of microbially induced calcite pre-
cipitation was investigated, for artificial rock fractures,
using bacteria-inclusive solutions.

3. Bacterial Transport Mechanisms

[12] The form in which bacteria are present in solution
affects their transport through fracture networks. In particu-
lar, where bacteria exist in deep groundwater, fluid geo-
chemistry, and microbe-mineral interactions can result in
the formation of bacterial flocs [Juniper et al., 1995], albeit
in considerably lower concentrations than in surface envi-
ronments. Over sufficiently long time scales bacterial sedi-
mentation can be a significant transport mechanism within
the natural environment [Wan et al., 1995; Inoue et al.,
2007], and as observed in surface environments [e.g.,
Droppo, 2004; Droppo et al., 2007], flocculation promotes
the process of sedimentation. The terminal settling velocity
(Us) for porous microbial flocs can be approximated using
Stoke’s law, [Johnson et al., 1996; Li and Yuan, 2002]:

Us5
gf ðqc2qlÞWd
3plqcd

� �

(6)

where the Reynolds number of the falling aggregate is <1
(Rea5qlUsd/l), g is the acceleration due to gravity, f is a
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ratio of the wet mass of cells to the dry mass of cells, qc is
the density of the microbial cell, ql is the density of the
fluid, Wd is the dry mass of an individual microbial floc,
d is the diameter of the microbial floc, and l is the fluid vis-
cosity. Stoke’s law therefore implies that the settling veloc-
ity is proportional to the floc diameter squared (since Wd, is
proportional to the floc diameter cubed). Wan et al. [1995]
illustrated that the time taken for terminal settling veloc-
ities to be reached is very small for bacterial sedimentation,
occurring over very short distances. It is therefore highly
likely that the terminal settling velocities of the flocs were
reached in our experiments. Other deposition and mobiliza-
tion mechanisms also exist for flocs and individual
microbes, for example surface attachment due to electro-
static forces, shear mobilization, and straining [DeNovio
et al., 2004]. This study investigated the role of all of these
processes in determining the spatial distribution of micro-
bially induced calcite precipitation on the surface of rock
fractures.

4. Experimental Methods

4.1. Experimental Setup

[13] Microbially induced calcite precipitation was inves-
tigated in fractures of varying widths and apertures. The
terms fracture width and fracture aperture are defined in
Figure 1 and are used consistently throughout the paper.
Fracture flow cells were constructed using two sheets of
transparent polycarbonate. Lexan 9030 polycarbonate was
used to manufacture the flow cells. Lexan polycarbonate is
hydrophobic with a water contact angle of 76� [Gil’man
et al., 2003]. Polycarbonates exhibit a negative surface
charge when in contact with salt solutions for a wide range
of pH (pH 4–10) [Kirby and Hasslebrink, 2004].
[14] Polycarbonate fracture flow cells of length 20 cm

and width 14 cm were used to enable visual observation of
microbially induced calcite precipitation on the fracture
surfaces over time. Each flow cell comprised a smooth top
sheet (Figure 1a) and a lower etched sheet designed to rep-
resent more than one fracture (Figure 1b). The fracture
flow cells were manufactured using a precision computer
numerical control (CNC) milling machine which has an
operating tolerance of 65 lm. Flow Cell 1 had eight frac-
tures all with different widths and apertures (Figure 1c).
Flow Cell 2 consisted of five etched fractures all of which
had an aperture of 0.3 mm but were of varying width
(Figure 1d). Figure 1e shows a schematic of the experimen-
tal setup. Calcite precipitation within the fractures was
monitored over time using a Canon Powershot G9 camera.
The fracture flow cells were in the horizontal position in all
of the experiments presented here, with the digital camera
mounted above the flow cells (Figure 1e) at a distance of
425 mm, allowing the full fracture flow cell to be photo-
graphed at a resolution of 12.1 megapixels. Reflection from
the upper polycarbonate surface was minimized using a
Hoya 58 mm circular polarizing filter. Digital photographs
were taken every 15 s during each injection cycle.

4.2. Fracture Flow Velocities

[15] The initial average flow velocity in each individual
fracture at the beginning of each experiment, vi, i.e., prior
to any calcite precipitation, was calculated as: vi5Q/A,

where Q is the flow rate and Ai the initial cross-sectional
area of each fracture (A5width 3 aperture). For Flow
Cell 1, Fractures 1 to 3 had the same Ai and thus for a given
Q the same vi ; Fractures 4 to 6 had half that vi and Frac-
tures 7 and 8 half that vi again. At the velocities tested
here, the Reynolds numbers of the fractures investigated in
Flow Cells 1 and 2 remained well within the laminar flow
regime (Re< 100). The initial average fracture velocities in
our experimental fractures ranged from 1 3 1023 to 149 3
1023 m/s for apertures ranging from 100 to 500 lm, which
corresponds to hydraulic gradients of 0.005 and above; the
higher end of the spectrum found in the subsurface.
Although high, such gradients are not unusual. Hydraulic
gradients in the interval 0.01–0.1 m/m have been reported
for Swedish crystalline bedrock [Nordqvist et al., 2008]
and moderate (0.015) to large hydraulic gradients of 0.15
and above were reported below Yucca Mountain [Fridrich
et al., 1994].

4.3. Microbial Suspensions

[16] In order to achieve traceable mineral precipitation
reactions in the laboratory, concentrations of solutions
needed to be increased relative to natural geological sys-
tems. As a consequence, microbial solutions used in the
experiments had much higher concentrations of bacterial
cells than would typically be encountered in groundwater
systems, in which 1052106 cells/mL have been observed
[Konhauser, 2007]. The optical density (OD) of the micro-
bial suspensions was measured using a spectrophotometer
(Thermo Scientific Helios Zeta ultraviolet-visible (UV-
VIS) model) at a fixed wavelength of 600 nm (OD600). This
is a common method of ensuring that similar numbers of
cells are present in prepared solutions of the same optical
density. There is a linear relationship between OD and bac-
terial cell concentration, although the relationship tends to
deviate from linear at high ODs [Hogg, 2013], it is a useful
means of comparing different bacterial solutions. Two
microbial suspensions were deployed in this study, with
OD600 of 1.0 and 0.25, which correspond to bacterial con-
centrations of approximately 107 and 108 cells/mL, respec-
tively, equivalent to 2 orders of magnitude greater than
typically observed in natural groundwater. Table 1 presents
details of the preparation of the microbial suspensions.
[17] Data are rare, but given the frequent presence of

fine-grained material (clay particles) within rock fractures
[Abelin et al., 1985; Zimmerman and Main, 2004] and the
ubiquitous nature of microbial populations at depth [e.g.,
Pedersen et al., 1996, 1997; Pedersen, 1997] it is likely
that bacteria exist in a range of forms from individual cells
to large flocs. To control the distribution of floc sizes
within the microbial suspensions, flocculation was induced
prior to injection into the fracture flow cells by mixing with
50 mM CaCl2. The introduction of CaCl2 leads the positive
calcium ions to be attracted to the surface of the bacteria,
reducing the double diffuse layer [Derjaguin and Landau,
1941; Verwey and Overbeek, 1948], and therefore reducing
the repulsive forces between bacterial cells ; they are thus
more likely to approach more closely and flocculate. Addi-
tionally, increasing divalent cation concentration has been
found to increase the concentration of exocellular protein
bound to a bacterial cell ; experiments suggest that these
bound proteins are closely associated with the flocculation
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of bacteria [Higgins and Novak, 1997; De Schryver et al.,
2008].
[18] The addition of CaCl2, to induce bacterial floccula-

tion prior to injection, allowed for control and observation
of the initial floc size distribution. The distributions of the
bacterial flocs present in the two microbial suspensions
(OD6005 1.0 and OD6005 0.25) prior to injection into the
flow cells, were investigated using a microscope (Olympus
BX60) under a bright field. The captured images were ana-
lyzed using ImageJ software to obtain the area of each indi-
vidual floc, from which floc diameters were calculated
(assuming the flocs are spherical) [Li and Yuan, 2002]. Fig-
ure 2 shows the form of an individual large S. pasteurii
floc, a range of other floc sizes and the presence of individ-
ual cells in the 1.0 OD600 solution. The floc size distribu-
tion for both microbial suspensions was characterized by

the parameters d50 and d90, which are the median and 90th
percentile floc diameters. These were calculated as
d505 13 lm, d90 5170 lm and d50 59 lm, d905 70 lm
for the 1.0 OD600 and 0.25 OD600 microbial suspensions,
respectively (using approximately 300 flocs for each).
While single cells were observed in both suspensions, the
median percentile floc diameter (d50) was only slightly
larger for the 1.0 OD600 suspension. The greatest variation
between the two suspensions was the d90 parameter which
indicates that much larger flocs were present in the 1.0
OD600 suspension than in the 0.25 OD600 suspension.

4.4. Flow Injection Strategy

[19] In these experiments, the aim was to investigate the
evolution of microbially induced calcite precipitation using
flocculated bacteria over time in flowing systems. Recent

Figure 1. Experimental setup: (a) plan view of top polycarbonate sheet, (b) plan view of lower etched
polycarbonate sheet, (c) cross section of fractures of different widths and apertures in Flow Cell 1 (verti-
cal exaggeration of apertures is 10X), (d) cross section of fractures of different widths and apertures in
Flow Cell 2 (vertical exaggeration of apertures is 10X), and (e) schematic of flow arrangement.

Table 1. Summary of Preparation and Constituents of Injection Solutions

Solution Preparation Constituents

Microbial
suspension

Sporosarcina pasteurii cultured on agar
(Brain Heart Infusion with 2% urea)

Equal volumes of S. pasteurii solution1 50 mM CaCl2

Grown overnight in Brain Heart Infusion (with 2% urea) Final Optical Density at 600 nm (OD600)5 1.0 or 0.25
Bacterial separation by vacuum filtration (Flow Cell 1)

and centrifuging (Flow Cell 2)
pH adjusted to 6.5 using 10% HCl

Cementation
solution

Autoclave CaCl2 solution 0.7M CaCl21CO(NH2)2
Sterile injection of 40% urea solution passing a 0.2 lm filter pH adjusted to 6.5 using 10% HCl
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4



research has illustrated that S. pasteurii can become com-
pletely encased in calcite, limiting subsequent precipitation
[Cuthbert et al., 2012; Tobler et al., 2012], for this reason
a repeated bacterial injection strategy was adopted in these
experiments. Prior to each injection cycle, the flow cells
were initially saturated by flushing with water for a mini-
mum of 30 min. The microbial suspension was immedi-
ately pumped into the flow cell after mixing. This was then
followed by an injection of a 0.7 M CaCl2 and Urea solu-
tion, referred to here as the cementation solution (see Table
1). In terms of salt concentration, this simulates a deep
saline water with total dissolved salt concentrations in the
range of 10,000–100,000 mg/L [Metcalfe et al., 2007]. For
these experiments, it was desirable to have a high availabil-
ity of calcium ions and carbonate ions (produced via urea
hydrolysis) in the system for calcite precipitation.
[20] Details of the experimental injection strategies are

presented in Table 2. Two Gilson Minipuls (Model 3) peri-
staltic pumps were used for pumping the treatment solu-
tions through the flow plates. Each channel on the
peristaltic pumps was connected to an inlet port of an indi-
vidual fracture in the plates. Each flow cell experiment was
performed with the same flow rate in each individual frac-
ture. Equal volumes of microbial suspension and cementa-

tion solution were used within each injection cycle in all of
the experiments. Injection of the microbial suspension, fol-
lowed by an injection of cementation fluid, constitutes one
injection cycle. For example, for Experiment 1 in Flow
Cell 1, 33.6 mL of microbial suspension was injected into
each fracture over a period of 30 min, followed by an injec-
tion of 33.6 mL of cementation fluid into each fracture over
30 min. This was repeated for five cycles. All of the experi-
ments presented herein were carried out under continuous
flow conditions; when the cells were not being injected
with microbial or cementation solutions (generally over-
night when image collection was not feasible), water was
continuously pumped through the cells at the same flow
rate to maintain flowing conditions, to minimize unob-
served precipitation and ensure that equal volumes of
microbial suspension and cementation fluid were injected
per cycle.

4.5. Scanning Electron Microscopy

[21] On completion of Experiment 3, Flow cell 2 was
opened and the calcite precipitate was sampled at 12 differ-
ent locations using sticky carbon tabs (note minimal pres-
sure was used to prevent any damage to the samples).
These samples were then analyzed using a Zeiss Sigma
field emission scanning electron microscope (SEM) with
ionized nitrogen under low vacuum. As a result the speci-
mens did not need to be coated prior to placing in the SEM.
Backscattered (secondary) electron imaging was used to
examine the calcite morphology. Energy-dispersive X-ray
microanalysis (INCA mapping) was also carried out to
determine composition.

5. Experimental Results

5.1. Initial Observations

[22] Figure 3 illustrates the temporal and spatial evolu-
tion of microbially induced calcite precipitation over a
number of injection cycles in a single fracture (Fracture 5
of Flow Cell 2). The calcite can be visually observed since
it precipitates as a white mineral. With each injection cycle,
more calcite precipitates are located on the fracture surfa-
ces. From examination of the surfaces at the end of each
test, it was evident that the precipitates observed in Figure
3 were predominantly located on the lower fracture surface,
although a thin layer of fine precipitate was present on all
fracture surfaces. In Figure 3, we observed there to be more

Figure 2. Optical microscope image of large microbial
floc, a range of other floc sizes, and the presence of individ-
ual cells in the 1.0 OD600 microbial suspension.

Table 2. Flow Rate, OD600, Pumped Injection Volumes, Duration, and Number of Injection Cycles

Experiment
Flow
Cell

Optical
Density of
Microbial
Suspension
(OD600)

Flow Rate
Per Fracture
(mL/min)

One Injection Cycle

No. of
Injection
Cycles

Stage 1: Injection of
Microbial Suspension Stage 2: Injection of Cementation Fluid

Volume
Injected Per
Fracture (mL)

Duration
(min)

Volume
Injected Per
Fracture (mL)

Duration
(min)

Mass of CaCl2
Injected Per
Fracture (g)

Mass of
CO(NH2)2
Injected Per
Fracture (g)

1 1 1.0 1.12 33.6 30 33.6 30 2.61 1.41 5
2 1 1.0 4.48 44.8 10 44.8 10 3.48 1.88 5
3 2 1.0 1.2 36 30 36 30 2.80 1.51 5
4a 2 0.25 1.2 36 30 36 30 2.80 1.51 25
4b 2 0.25 0.6 18 30 18 30 1.40 0.76 10
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precipitates located close to the fracture inlets, with less
located further along the fractures moving from left to
right. Within this system the white calcite precipitates
observed on the fracture surfaces of the flow cell, may be
attributed to (a) calcite crystals which have grown from
heterogeneous nucleation on fracture surfaces, (b) microbe-
calcite aggregates (i.e., heterogeneous nucleation on cell
surfaces), and (c) homogeneous nucleation of calcite crys-
tals in solution.
[23] Figure 3a is an image of Fracture 5 taken 3 min into

the cementation injection of Injection Cycle 1 and Figure
3b is taken at the end of Injection Cycle 1, i.e., after 30 min
of injecting cementation fluid. By comparing Figures 3a
and 3b it becomes evident that, during a single cycle, some

of the precipitates are deposited and then removed; this
type of observation was associated with microbe-calcite
aggregates, essentially mineralized flocs. A video of all five
injection cycles in this experiment (Experiment 3, Table 2)
was created using time-lapse photography and is included
as supporting information. From visual observation (see
supporting information video), it is evident that the trans-
port of microbial flocs and calcite precipitates within, and
indeed out of, the flow cell governs the eventual spatial dis-
tribution of the calcite precipitates on the fracture surfaces.
Calcite precipitates may exit the flow cell as microbe-
calcite aggregates and as calcite crystals which formed in
suspension; indeed there was a build up of calcite precipi-
tation in the effluent container during these experiments.

Figure 3. Evolution of microbially induced calcite precipitation in Fracture 5 of Flow Cell 2: Digital
photographs (a) during the injection of cementation fluid (t5 3 mins) in Injection Cycle 1, (b) at the end
of Injection Cycle 1 (t5 30 mins), (c) at the end of Injection Cycle 2, (d) at the end of Injection Cycle 3,
and (e) at the end of Injection Cycle 4.
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The focus of this investigation is on how the pattern of
microbially induced calcite precipitation within the cell,
evolves spatially and temporally on the fracture surfaces.
[24] In Figure 3, there is clear evidence of channeling

and the formation of tortuous, braided pathways within the
fracture as calcite is precipitated. The experiment (Experi-
ment 3) presented in Figure 3 (and in the supporting infor-
mation video) was carried out three times and similar
braided patterns of channeling were observed consistently
in each case, although the exact location and number of
channels differed each time. Braiding, as observed here, is
a common feature of sedimentation processes, for example,
as observed in fluvial systems [e.g., Leopold and Wolman,
1957]. The next sections present results illuminating to
what extent hydraulic controls (velocity, fracture aperture,

and flow rate) influence the spatial distribution of calcite
precipitates on the fracture surfaces.

5.2. Influence of Velocity

[25] Figure 4 presents the microbially induced calcite
precipitation patterns observed in the fractures of Flow Cell
1 after five injection cycles using microbial suspensions
with an OD6005 1.0 at (a) a constant flow rate of 1.12 mL/
min and (b) a constant flow rate of 4.48 mL/min (Experi-
ments 1 and 2 in Table 2). The widths (w) and aperture (b)
of each fracture are noted on the figure, and the velocities
indicated are the initial average flow velocities in each indi-
vidual fracture, vi prior to any calcite precipitation. The
area of each flow cell presented in the digital photographs
in Figure 4 is defined by the dashed rectangle in Figure 1b.

Figure 4. Influence of velocity and aperture on calcite precipitation (Flow Cell 1) after five injection
cycles at (a) Q5 1.12 mL/min and (b) Q5 4.48 mL/min. W is the width of an individual fracture per-
pendicular to the flow direction and marked in Figure 4a, b is the fracture aperture, and vi is the initial
average fracture velocity, i.e., prior to precipitation. It should also be noted that the flow cell was not
fully sealed between channels (see Figure 4b) and across cell flow was observed between fractures; the
actual volume of across cell flow was very low, as each fracture was calibrated for the desired flow rate
both prior to entering the fracture inlet and at the fracture outlet.

EL MOUNTASSIR ET AL.: MICROBIALLY MEDIATED MINERALIZATION

7



[26] In Figure 4a, it is evident that similar channel-like
patterns of precipitates were created in Fractures 3, 6, and
8, where precipitation has reduced each fracture to a num-
ber of smaller tortuous pathways. Fractures 3, 6, and 8, all
have the same aperture of 100 lm and exhibited similar
precipitation patterns, even at different velocities. The
aperture influence can be explained by considering that the
microbial flocs have the same vertical distance to travel in
fractures of the same aperture before deposition onto the
lower fracture surface in the flow cell, and therefore under
creeping flow conditions (Rea< 1), the settling time is
equal.
[27] Figure 4b shows the same experiment but with an

increased flow rate of 4.48 mL/min. In this case, similar
channelized flow paths were again observed in Fractures 6
and 8, but channeling was no longer apparent in Fracture 3
at the higher initial fracture velocity of 149 3 1023 m/s.
Furthermore, if we compare Fracture 6 from Figures 4a and
4b, it is clear that less calcite precipitate was present on the
fracture surfaces at the higher fracture velocity (after five
injection cycles), this is despite the fact that for Q5 4.48
mL/min, the mass of calcium chloride and urea injection
per fracture during each cycle was one third greater than
injected at Q5 1.12 mL/min (see Table 2). At the higher
flow rate (Figure 4b), wider channels were maintained open
compared to the lower flow rate (Figure 4a) in which the
channels are narrower. Velocity clearly has an important
influence on both the spatial distribution and the eventual
mass of calcite that precipitates onto the fracture surfaces.
[28] Figure 5 shows a closer inspection of Fracture 8

postprecipitation for the areas marked with rectangles in
Figures 4a and 4b. These detailed images were used to gain
an approximate estimate of the magnitude of the fracture
velocity in the remaining open channels. Image analysis

was carried out using MatLab; using over 500 slices across
each image to determine the new cross-sectional area of the
fracture postprecipitation (Ap). The average fracture veloc-
ity postprecipitation (vp) was then calculated as Q/Ap Two
categorization techniques were used to gauge the sensitiv-
ity of the velocity estimates to the technique applied; (i)
categorizing each pixel of the image as being either open or
closed depending on its gray scale value and (ii) using three
categories for the channel: open, half open, or closed
depending on its gray scale value (Figures 5aii and 5bii).
Combining the results from both techniques, the velocity in
the open channels was estimated to be in the range of 67 3
1023 to 110 3 1023 m/s for a flow rate of 1.12 mL/min and
in the range of 81 3 1023 to 112 3 1023 m/s for a flow
rate of 4.48 mL/min. It is interesting to note that even
though the patterns of precipitation vary; the velocity
ranges for the open channels were of a similar magnitude.
These observations lend support to the hypothesis that, as
local velocities increase, shear velocities at fracture surfa-
ces will exceed the actual settling velocity of the floc; then
according to conventional theory on particle entrainment,
all flocs will be entrained and deposition will be inhibited
[Van Rijn, 1984].

5.3. Bacterial Density (Concentration)

[29] If the ratio of floc settling velocity to channel veloc-
ity is a key parameter governing the eventual location of
calcite precipitates on the lower fracture surface, then the
floc size should be an important variable : larger flocs
should have higher settling velocities and hence settle out
quicker for a given fracture velocity. The effect of different
floc size distributions on microbially induced calcite pre-
cipitation was investigated in Flow Cell 2 where all the
fractures had the same aperture of 300 lm but had different

Figure 5. Development of open faster flowing channels in Fracture 8 after five injection cycles at
(a) Q5 1.12 mL/min and (b) Q5 4.48 mL/min: (i) digital photograph of areas in Fracture 8 marked on
Figure 4, (ii) digital estimation of depth of calcite precipitation (image analysis conducted using Matlab),
where blue indicates that the fracture is fully closed at that location (i.e., aperture5 0), for the red chan-
nels the aperture is 0.1 mm (fully open) and for the green channels the aperture is 0.05 mm.
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fracture widths (Figure 1d). Figure 6a presents Flow Cell 2
after five injection cycles had been carried out at a flow
rate of 1.2 mL/min with an OD6005 1.0. The pattern of
precipitation observed in Figure 6a is strikingly similar in
all of the five fractures, with channeling being more devel-
oped in the fractures with lower (initial) velocities. Figure
6b presents Flow Cell 2 after 20 injection cycles have been
carried out at an OD6005 0.25. As the bacterial density
(OD600) was reduced from 1.0 to 0.25 OD600, the diameter
of the largest flocs in the suspension decreased. By compar-
ing Figures 6a and 6b it is apparent that after 4 times as
many injection cycles, the mass of precipitates still
remained less in the fractures with the lower OD600. Fur-
thermore, in Figure 6b, where the experiment was con-
ducted using the lower optical density (0.25 OD600), the
formation of tortuous flow paths is only apparent in Frac-
ture 5. In the other fractures in Figure 6b, the precipitation

appeared to be more patch like, i.e., at an earlier stage of
channel development. The evidence for lower settling
velocities, due to a reduction in the diameter of the largest
flocs present in the 0.25 OD600 suspension, is most apparent
in Fractures 2, 3, and 4 of Figure 6b, where the flocs have
evidently been transported further along the fracture before
settling out (i.e., precipitation is further downstream com-
pared to that in Figure 6a).
[30] For both Figures 6a and 6b, the experiments were

carried out using approximately the same total numbers of
bacteria and equal injection volumes per cycle (see Table
2) resulting in the same total availability of calcium ions
and urea in each fracture. The experiment confirms the
proposition that larger floc sizes give rise to higher settling
velocities, which resulted in increased precipitation near
the inlet as well as increased total mass of precipitate on
the fracture surfaces.

Figure 6. Influence of bacterial density on calcite precipitation at Q5 1.2 mL/min (Flow Cell 2):
(a) after five injection cycles at 1.0 OD600 and (b) after 20 injection cycles at 0.25 OD600. W is the width
of an individual fracture perpendicular to the flow direction and marked in Figures 4a and 4b is the frac-
ture aperture and v is the initial average fracture velocity, i.e., prior to precipitation.

EL MOUNTASSIR ET AL.: MICROBIALLY MEDIATED MINERALIZATION

9



5.4. Reducing the Flow Rate

[31] Our experiments have indicated that the mass and
spatial distribution of microbially induced calcite precipi-
tates on the lower fracture surface are principally controlled
by the ratio of shear velocity at fracture surfaces to floc set-
tling velocity. This implies that, by dropping the flow rate
within a fracture, it should be possible to fill previously sta-
ble open channels. To test this hypothesis, we ran Flow

Cell 2 for 25 injection cycles at an initial flow rate of
Q5 1.2 mL/min. A comparison of the precipitate at 24 and
25 cycles (Figures 7a and 7d and Figures 7b and 7e, respec-
tively) shows that, whilst some precipitation was occurring
within the mass of precipitates, the open channels them-
selves had become stable (Figures 7a, 7b, 7d, and 7e,
Experiment 4a in Table 2). The flow rate was then halved
to 0.6 mL/min and an additional 10 injection cycles were
carried out (see Figure 7c). By dropping the flow rate,

Figure 7. Influence of flow rate on calcite precipitation at an OD600 of 0.25 (Flow Cell 2): (a) after 24
injection cycles at Q5 1.2 mL/min, (b) after 25 injection cycles at Q5 1.2 mL/min, (c) After an addi-
tional 10 injection cycles at Q5 0.6 mL/min, (d–f) digital estimations of the channel patterns formed
within the rectangle marked in Figures 7a–7c, respectively, which have been determined using the
thresholding technique using ImageJ. W is the width of an individual fracture perpendicular to the flow
direction and marked in Figures 4a and 4b is the fracture aperture.
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Figure 7c illustrates that as predicted, some of the previ-
ously open channels within the fracture started to in-fill,
which reduced the width of the remaining open channels
(compare Figures 7e and 7f) while other channels became
completely blocked with calcite (see Fracture 5, Figure 7c).
This supports the hypothesis that it is the local velocity var-
iations that predominantly control the eventual spatial dis-
tribution of microbially induced calcite precipitates on the
fracture surfaces, with precipitation forming on cell surfa-
ces, while microbes are still in suspension and/or after
deposition.

5.5. Microbially Induced Calcite Morphology

[32] To investigate the morphology of the calcite under
different flow conditions within the channel network, speci-
mens were sampled for examination using Scanning Elec-
tron Microscopy (SEM) from 12 different locations.

Locations were classified into three distinct types, since they
correlated to consistently different calcite morphology;
proximal to an open channel (where the velocities are
higher), set back slightly from an open channel and far from
an open channel. SEM images of representative samples
from each of the three location types (proximal, set-back,
and far—samples A, B, and C, respectively) are shown in
Figure 8 and their locations are marked on Figure 6a.
[33] There is a noticeable difference between the SEM

images of Specimens A, B, and C: as we move to locations
at a greater distance from the main open channel, there are
more bridges and linkages between the microbe-calcite
aggregates. This is particularly evident in Figure 8c where
many of the aggregates appear to be linking together to
form a calcite matrix. This suggests that in locations with
higher channel velocities, such as Location A close to the
main remaining open channel, calcite growth was limited,

Figure 8. Back scattered electron images of calcite precipitated under continuous flow conditions
(Flow cell 2, Q5 1.2 mL/min): (a) calcite sampled at location A, (sampled proximal to an open chan-
nel), (b) calcite sampled at location B (sampled from a position set-back from open channel), (c) calcite
sampled at location C (sampled from position located far from open channel), and (d) a single microbe-
calcite aggregate sampled at location B, at higher magnification. Locations A, B, and C are marked on
Figure 6a.
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whereas in the areas of lower channel velocities (Location
C) additional crystal growth occurred (compared to A), in
the form of bridges between microbe-calcite aggregates
These observations were consistent for all specimens from
the three different locations analyzed under the SEM.
[34] Figure 8d shows a single microbe-calcite aggregate

from Location B, at higher magnification. It is evident that
calcite has precipitated on the surface of the bacteria, and
that calcite encrusted bacteria are rod like and several
microns in length. This supports the theory that calcite pre-
cipitates nucleate on the surface of the bacterium [e.g.,
Schultze-Lam et al., 1996; Stocks-Fischer et al., 1999].
Distinct crystal growth in the form of calcite plates (the
beginning of rhombohedrons) are also visible in Figure 8d
among the mass of calcite coated bacteria. The microbe-
calcite aggregates appear to be highly uniform in size,
around 30–40 lm. This morphology is distinctly different
from the SEM images of predominantly rhombohedral cal-
cite crystals reported by other researchers [e.g., Tobler
et al., 2012], where experiments include periods of no flow.

6. Discussion

[35] For microbially induced calcite precipitation, we
have shown that fluid velocity is a key control on the pattern
of precipitates observed on the fracture surfaces. Our experi-
ments have shown that as calcite precipitates, the fracture
aperture distribution is altered and spatially variable patterns
of velocity develop which in turn result in increased mass of
precipitate in regions of low flow velocities. This greater
mass of precipitates acts to reduce the fracture aperture in
those locations, further reinforcing the existence of the chan-
nel network. This feedback mechanism between velocity
and microbially mediated precipitation, ultimately leads to
the maintenance of a small number of self-organized chan-
nels that remain open within the fracture fill.
[36] Many processes contribute to nucleation and growth

of microbially mediated mineral precipitation within frac-
tures. Evidence from the SEM images confirms that in
these experiments calcite appears to be predominantly
nucleated on the surface of the bacteria. The importance of
the bacteria cells as nucleation surfaces is clear if we com-
pare available fracture surface area to cell surface area
within one experiment, for example: considering Fracture
8 (the widest fracture) in Flow Cell 1 has a surface area of
7 240 mm2, assuming perfectly smooth surfaces. The
microbial suspension, with an OD6005 1.0 corresponds
approximately to 3 3 108 colony-forming unit (CFU)/mL
(using the relationship determined for S. pasteurii by
[Parks, 2009]). In Experiment 1 (Table 2) a total of 168
mL of microbial suspension was injected into Fracture 8
(five injections of 33.6 mL), therefore potentially 5 3 1010

cells could have acted as nucleation surfaces. Assuming S.
pasteurii have a diameter of 0.5 lm and a length of 2.5 lm
(values selected by visual observation of SEM images) this
corresponds to a total cell surface area of approximately
216,000 mm2. Hence, the bacteria clearly provide a much
greater surface area for potential nucleation than the frac-
ture surfaces.
[37] Nucleation and growth of calcite occurs while the

microbial cells or flocs are still in suspension (and/or after
they have been deposited on the lower fracture surface).

Our experiments indicate that sedimentation processes
dominate the transport of the resulting microbial aggregates
(and flocs) within the fractures, with the overwhelming
majority of the calcite precipitates located on the lower
fracture surface due to gravitational settling of microbe-
calcite aggregates. We have demonstrated that the rate at
which the aggregates settle is controlled by the diameter of
the aggregate. Feedback occurs because once aggregates
have settled on the initially smooth fracture surface; they
act as obstacles to advective flow resulting in regions of
low velocity immediately downstream. These low velocity
regions promote increased calcite precipitation and crystal
growth, and as more and more aggregates settle out of sus-
pension, preferential channels are formed within the frac-
ture. Once the shear velocity at the fracture surfaces
exceeds the settling velocity of an individual aggregate,
aggregate deposition is inhibited and any deposited aggre-
gates will become mobilized [Van Rijn, 1984]. The shear
velocity required to keep aggregates in suspension, and
hence channels open, will drop with decreasing aggregate
size. High fracture velocities were investigated in these
experiments, but in natural groundwaters where the con-
centration of microbes is lower and thus the size of flocs is
likely to be much smaller, lower channel velocities would
be required to inhibit deposition and thus to maintain chan-
nels open.
[38] Individual bacteria cells are transported to all frac-

ture surfaces by Brownian diffusion [Yao et al., 1971].
Their attachment is known to be dependent on the sum of
the electrostatic forces acting between the bacterial cell and
the surface, including electrical double-layer repulsion (or
attraction) and van der Waals forces [DeNovio et al., 2004;
Bradford et al., 2006]. Heterogeneous nucleation of calcite
on individual cells may be one of the mechanisms contrib-
uting to the thin layer of fine calcite observed on all frac-
ture surfaces. It could, however, also be as a result of
heterogeneous nucleation of calcite on the fracture surfaces
themselves. Once nucleation has occurred then calcite
growth is enhanced at the fracture walls and particularly
within the corners of the fractures, as these are low velocity
regions, and have correspondingly low shear rates. This
results in a very thin layer of calcite precipitating on all the
fracture surfaces, alongside slightly greater precipitation in
the channel corners. These fine precipitates were observed
in our experiments during the early injection cycles and
whitening of these fine precipitates did not appear to pro-
gress during the experiment. This is consistent with the
observations of Holmqvist et al., [2005], who demonstrated
that low shear rates (low flow velocities) enhance crystalli-
zation by improving transport to crystal surfaces whereas
higher shear rates (higher flow velocities) considerably
reduce growth rates and ultimately prevent crystal growth,
due to particles being sheared off from the crystal surface
and by preventing incorporation of particles in the fluid
phase into the crystal structure.
[39] Throughout all the artificial fracture experiments

conducted, it was repeatedly observed that less calcite pre-
cipitation occurred during the first injection cycle than in
subsequent cycles. One potential explanation for this is the
initially pristine condition of the smooth-walled fracture,
which may affect the sedimentation process. Once calcite
precipitation is initialized, increased surface roughness
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enhances the boundary layer effect, increasing drag near
the surface and reducing the advective velocity. This will
promote floc settling. In addition, the activation energy
required for nucleation is typically greater than for crystal
growth [e.g., Rodriguez-Blanco et al., 2011], thus growth
proceeds more rapidly once calcium carbonate nuclei have
already formed in the system. There may also be an influ-
ence of the negative surface charge on the pristine polycar-
bonate sheet, which may repel to some extent the
deposition of individual bacteria and flocs and reduce
attachment due to electrostatic forces. This is consistent
with the results of Schultz et al. [2011] and Tobler et al.
[2012] who also noted that calcite precipitation increases
once calcite is present on a material surface.

[40] An observation in the experiments carried out with
the 1.0 OD600 microbial suspension (characterized by a
higher d90 floc size), was that the mass of precipitation was
always greater closest to the injection point and decreased
along the length of the fracture. Several mechanisms com-
bine to promote this. First, the larger floc sizes result in
more rapid sedimentation, closer to the inlet. Second, once
flocs have settled and calcite has precipitated, the fracture
aperture is reduced resulting in a straining of the flocs and
individual microbes. Finally, whilst early in the precipita-
tion process straining occurs, once stable narrow channels
have been formed the increased channel velocity was
observed to exert sufficient force to break down the large
flocs and further straining was inhibited. Immobilization of

Figure 9. Possible development of complex patterns of microbially mediated fracture mineralization
over geological time scales.
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particles closer to the inlet is predicted in classical filtration
theory (CFT) models [e.g., Yao et al., 1971]. However,
more recently experimental studies [Tufenkji and Elime-
lech, 2004; Gargiulo et al., 2007] have demonstrated that
microbial filtration is significantly greater closer to the inlet
than that predicted by CFT due to the more complex nature
of microbe-surface interactions. In addition, the greater
mass of precipitates located closer to the injection point
may also be due to depletion of the reactants’ concentra-
tions further downstream, as observed by Hilgers and Urai
[2002]. However, this is thought to occur only when flow
velocities are sufficiently small [Nollet et al., 2006] and
thus is unlikely to be the main reason for the variation
observed with length along the fractures in this study.
[41] There is considerable field evidence for the forma-

tion of isolated, open channels within mineral-filled frac-
tures. In hydrogeology, it is now a well-accepted view that
flow in fractured rock is predominantly focused through
channels, which cover an (often small) proportion of the
total fracture surface [e.g., Abelin et al., 1985; Bourke,
1987; Neretnieks, 1985; Durham, 1997]. Factors contribut-
ing to this channeling have been studied from theoretical,
numerical, and experimental perspectives, including initial
aperture distribution [e.g., Moreno et al., 1985; Tsang and
Tsang, 1987; Brown et al., 1998] and relative permeability
in multiphase systems [e.g., Birkholzer and Tsang, 1997;
Glass et al., 2002; Chen et al., 2004]. Channeling due to
(chemical) dissolution and or precipitation of minerals has
also been widely investigated [e.g., Durham et al., 2001;
Andre and Rajaram, 2005; Detwiler, 2010].
[42] Pedersen et al. [1997] present field observations in

which there is strong evidence for microbially mediated
calcite precipitation at depth based on stable isotope analy-
ses; they comment that different generations of calcite
were not precipitated uniformly across the entire fracture
surface but rather they observed a channel-like pattern.
Budai et al. [2002] who linked calcite precipitation in frac-
tures with microbial methane generation and oxidation,
presented photographic evidence of calcite located in irreg-
ular patches and of channelized calcite precipitation on
fracture surfaces at the Norwood outcrop. These natural
channels are on a millimeter scale with a similar size and
distribution to those in our experiments. Such field observa-
tions of channeling within fractures could be explained by
the hydrodynamic feedback mechanism between fluid
velocity and microbially mediated mineral precipitation
demonstrated by our experiments.
[43] For hydrodynamic feedback to result in open chan-

nels remaining stable over a given time period, there must
be a regional driver for groundwater flow otherwise the
channels will begin to block in periods of low flow. Exam-
ples might include regional (deep) circulation of meteoric/
glacial melt waters or hydrothermal fluids. Over geological
times scales this could conceivably lead to a cyclic process
(Figure 9) of: fracture creation; possible microbially medi-
ated precipitation leading to stable channel formation (dur-
ing a period in which groundwater flow is maintained);
channel sealing, either by the same microbially mediated
precipitation process with decreased groundwater flow rates,
or by an alternative mineralization process; subsequent pres-
sure induced or tectonic fracture reactivation leading to frac-
ture reopening; then continued mineralization. We postulate

that this could result in complex patterns of fracture mineral-
ization such as those illustrated in Figure 9. It should be
noted that shallow meteoric groundwater circulation would
not tend to result in similar patterns of mineralization and
channel formation, since as the channels block there is no
mechanism for pressure-induced reactivation.

7. Conclusions

[44] The experimental results presented in this paper
have shown that under flowing conditions, the spatial distri-
bution of microbially induced calcite precipitates on frac-
ture surfaces is controlled by fluid velocity. The main
conclusions of the paper are:
[45] 1. Even for a uniform initial fracture aperture with a

steady flow rate, a feedback mechanism exists between
velocity and precipitation that results in mineral-fill distri-
butions that focus flow into a small number of self-
organizing channels that remain stable. Ultimately, this
feedback mechanism controls the final aperture profile gov-
erning flow within the fracture.
[46] 2. Our experiments demonstrate that calcite precipi-

tates nucleate on bacteria cell surfaces and that the trans-
port of flocculated bacteria to fracture surfaces is governed
by sedimentation. The microbial flocs settle out of a quies-
cent solution at a velocity that is dependent on individual
floc size and density. This settling velocity competes with
the shear velocity, inhibiting deposition via entrainment.
As precipitation progresses, the flow becomes more chan-
neled within the fracture, enhancing precipitation in regions
of low flow and inhibiting it in the remaining high velocity
channels.
[47] 3. Our results could explain field observations of

microbially mediated calcite precipitation at depth [Peder-
sen et al., 1997; Budai et al., 2002] where evidence of
channelized mineral fill, on similar scales, has been
observed in natural fractures.

[48] Acknowledgments. This work was funded by the Engineering
and Physical Sciences Research Council (EPSRC) grant (EP/G063699/1).
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