3,244 research outputs found

    Natural equilibrium states for multimodal maps

    Full text link
    This paper is devoted to the study of the thermodynamic formalism for a class of real multimodal maps. This class contains, but it is larger than, Collet-Eckmann. For a map in this class, we prove existence and uniqueness of equilibrium states for the geometric potentials tlogDf-t \log|Df|, for the largest possible interval of parameters tt. We also study the regularity and convexity properties of the pressure function, completely characterising the first order phase transitions. Results concerning the existence of absolutely continuous invariant measures with respect to the Lebesgue measure are also obtained

    Etiology and pathophysiology of chronic transplant dysfunction

    Get PDF

    The Role of Dysregulated Glucose Metabolism in Epithelial Ovarian Cancer

    Get PDF
    Epithelial ovarian cancer (EOC) is the most lethal gynecologic cancer and also one of the most poorly understood. Other health issues that are affecting women with increasing frequency are obesity and diabetes, which are associated with dysglycemia and increased blood glucose. The Warburg Effect describes the ability of fast-growing cancer cells to preferentially metabolize glucose via anaerobic glycolysis rather than oxidative phosphorylation. Recent epidemiological studies have suggested a role for hyperglycemia in the pathogenesis of a number of cancers. If hyperglycemia contributes to tumour growth and progression, then it is intuitive that antihyperglycemic drugs may also have an important antitumour role. Preliminary reports suggest that these drugs not only reduce available plasma glucose, but also have direct effects on cancer cell viability through modification of molecular energy-sensing pathways. This review investigates the effect that hyperglycemia may have on EOC and the potential of antihyperglycemic drugs as therapeutic adjuncts

    A transparent 3D printed device for assembling droplet hydrogel bilayers (DHBs)

    Get PDF
    We report a new approach for assembling droplet hydrogel bilayers (DHBs) using a transparent 3D printed device. We characterise the transparency of our platform, confirm bilayer formation using electrical measurements and show that single-channel recordings can be obtained using our reusable rapid prototyped device. This method significantly reduces the cost and infrastructure required to develop devices for DHB assembly and downstream study

    Confidence levels and likelihood terms in IPCC reports : a survey of experts from different scientific disciplines

    Get PDF
    Scientific assessments, such as those by the Intergovernmental Panel on Climate Change (IPCC), inform policymakers and the public about the state of scientific evidence and related uncertainties. We studied how experts from different scientific disciplines who were authors of IPCC reports, interpret the uncertainty language recommended in the Guidance Note for Lead Authors of the IPCC Fifth Assessment Report on Consistent Treatment of Uncertainties. This IPCC guidance note discusses how to use confidence levels to describe the quality of evidence and scientific agreement, as well likelihood terms to describe the probability intervals associated with climate variables. We find that (1) physical science experts were more familiar with the IPCC guidance note than other experts, and they followed it more often; (2) experts' confidence levels increased more with perceptions of evidence than with agreement; (3) experts' estimated probability intervals for climate variables were wider when likelihood terms were presented with "medium confidence" rather than with "high confidence" and when seen in context of IPCC sentences rather than out of context, and were only partly in agreement with the IPCC guidance note. Our findings inform recommendations for communications about scientific evidence, assessments, and related uncertainties.Peer reviewe

    Inverse-perovskites A3BO (A = Sr, Ca, Eu/B = Pb, Sn) : a platform for control of Dirac and Weyl fermions

    Get PDF
    This work was partly supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI (Grant Nos. 24224010, 15K13523, JP15H05852, JP15K21717, and 17H01140), EPSRC (Grant No. EP/P024564/1), and the Alexander von Humboldt FoundationBulk Dirac electron systems have attracted strong interest for their unique magnetoelectric properties as well as their close relation to topological (crystalline) insulators. Recently, the focus has been shifting toward the role of magnetism in stabilizing Weyl fermions as well as chiral surface states in such materials. While a number of nonmagnetic systems are well known, experimental realizations of magnetic analogs are a key focus of current studies. Here, we report on the physical properties of a large family of inverse perovskites A3BO (A = Sr, Ca, Eu/B = Pb, Sn) in which we are able to not only stabilize 3D Dirac electrons at the Fermi energy but also chemically control their properties. In particular, it is possible to introduce a controllable Dirac gap, change the Fermi velocity, tune the anisotropy of the Dirac dispersion, and—crucially—introduce complex magnetism into the system. This family of compounds therefore opens up unique possibilities for the chemical control and systematic investigation of the fascinating properties of such topological semimetals.Publisher PDFPeer reviewe

    The compound Poisson limit ruling periodic extreme behaviour of non-uniformly hyperbolic dynamics

    Full text link
    We prove that the distributional limit of the normalised number of returns to small neighbourhoods of periodic points of non-uniformly hyperbolic dynamical systems is compound Poisson. The returns to small balls around a fixed point in the phase space correspond to the occurrence of rare events, or exceedances of high thresholds, so that there is a connection between the laws of Return Times Statistics and Extreme Value Laws. The fact that the fixed point in the phase space is a repelling periodic point implies that there is a tendency for the exceedances to appear in clusters whose average sizes is given by the Extremal Index, which depends on the expansion of the system at the periodic point. We recall that for generic points, the exceedances, in the limit, are singular and occur at Poisson times. However, around periodic points, the picture is different: the respective point processes of exceedances converge to a compound Poisson process, so instead of single exceedances, we have entire clusters of exceedances occurring at Poisson times with a geometric distribution ruling its multiplicity. The systems to which our results apply include: general piecewise expanding maps of the interval (Rychlik maps), maps with indifferent fixed points (Manneville-Pomeau maps) and Benedicks-Carleson quadratic maps.Comment: To appear in Communications in Mathematical Physic

    Sr3Ru2O7: Thermodynamics of Phase Formation in a Quantum Critical Metal

    Get PDF
    The behaviour of matter near zero temperature continuous phase transitions, or 'quantum critical points' (QCPs) is a central topic of study in condensed matter physics. In fermionic systems, fundamental questions remain unanswered: the nature of the quantum critical regime is unclear because of the apparent breakdown of the concept of the quasiparticle, a cornerstone of existing theories of strongly interacting metals. Even less is known experimentally about the formation of ordered phases from such a quantum critical 'soup'. Here, we report a study of the specific heat across the phase diagram of the model system Sr3Ru2O7, which features an anomalous phase whose transport properties are consistent with those of an electronic nematic. We show that this phase, which exists at low temperatures in a narrow range of magnetic fields, forms directly from a quantum critical state, and contains more entropy than mean-field calculations predict. Our results suggest that this extra entropy is due to remnant degrees of freedom from the highly entropic state above T_c. The associated quantum critical point, which is 'concealed' by the nematic phase, separates two Fermi liquids, neither of which has an identifiable spontaneously broken symmetry, but which likely differ in the topology of their Fermi surfaces.Comment: Corrected version after acceptance for publication (minor text corrections and typo axis labeling of Fig. 3B). Journal reference adde

    Chytrid epidemics may increase genetic diversity of a diatom spring-bloom

    Get PDF
    Contrary to expectation, populations of clonal organisms are often genetically highly diverse. In phytoplankton, this diversity is maintained throughout periods of high population growth (that is, blooms), even though competitive exclusion among genotypes should hypothetically lead to the dominance of a few superior genotypes. Genotype-specific parasitism may be one mechanism that helps maintain such high-genotypic diversity of clonal organisms. Here, we present a comparison of population genetic similarity by estimating the beta-dispersion among genotypes of early and peak bloom populations of the diatom Asterionella formosa for three spring-blooms under high or low parasite pressure. The Asterionella population showed greater beta-dispersion at peak bloom than early bloom in the 2 years with high parasite pressure, whereas the within group dispersion did not change under low parasite pressure. Our findings support that high prevalence parasitism can promote genetic diversification of natural populations of clonal hosts
    corecore