152 research outputs found

    The OGLE View of Microlensing towards the Magellanic Clouds. III. Ruling out sub-solar MACHOs with the OGLE-III LMC data

    Full text link
    In the third part of the series presenting the Optical Gravitational Lensing Experiment (OGLE) microlensing studies of the dark matter halo compact objects (MACHOs) we describe results of the OGLE-III monitoring of the Large Magellanic Cloud (LMC). This unprecedented data set contains almost continuous photometric coverage over 8 years of about 35 million objects spread over 40 square degrees. We report a detection of two candidate microlensing events found with the automated pipeline and an additional two, less probable, candidate events found manually. The optical depth derived for the two main candidates was calculated following a detailed blending examination and detection efficiency determination and was found to be tau=(0.16+-0.12)10^-7. If the microlensing signal we observe originates from MACHOs it means their masses are around 0.2 M_Sun and they compose only f=3+-2 per cent of the mass of the Galactic Halo. However, the more likely explanation of our detections does not involve dark matter compact objects at all and rely on natural effect of self-lensing of LMC stars by LMC lenses. In such a scenario we can almost completely rule out MACHOs in the sub-solar mass range with an upper limit at f<7 per cent reaching its minimum of f<4 per cent at M=0.1 M_Sun. For masses around M=10 M_Sun the constraints on the MACHOs are more lenient with f ~ 20 per cent. Owing to limitations of the survey there is no reasonable limit found for heavier masses, leaving only a tiny window of mass spectrum still available for dark matter compact objects.Comment: Accepted for publication in MNRAS. On-line data available on OGLE website: http://ogle.astrouw.edu.p

    Continuum field description of crack propagation

    Full text link
    We develop continuum field model for crack propagation in brittle amorphous solids. The model is represented by equations for elastic displacements combined with the order parameter equation which accounts for the dynamics of defects. This model captures all important phenomenology of crack propagation: crack initiation, propagation, dynamic fracture instability, sound emission, crack branching and fragmentation.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Lett. Additional information can be obtained from http://gershwin.msd.anl.gov/theor

    Ca II Triplet Spectroscopy of Small Magellanic Cloud Red Giants. I. Abundances and Velocities for a Sample of Clusters

    Full text link
    We have obtained near-infrared spectra covering the Ca II triplet lines for a number of stars associated with 16 SMC clusters using the VLT + FORS2. These data compose the largest available sample of SMC clusters with spectroscopically derived abundances and velocities. Our clusters span a wide range of ages and provide good areal coverage of the galaxy. Cluster members are selected using a combination of their positions relative to the cluster center as well as their abundances and radial velocities. We determine mean cluster velocities to typically 2.7 km/s and metallicities to 0.05 dex (random errors), from an average of 6.4 members per cluster. (continued in paper)Comment: 68 pages, 15 figures, Accepted to AJ Reason for the replacement: section 7 and fig. 9 have been modified according referee suggestion

    Star Formation History in two fields of the Small Magellanic Cloud Bar

    Get PDF
    The Bar is the most productive region of the Small Magellanic Cloud in terms of star formation but also the least studied one. In this paper we investigate the star formation history of two fields located in the SW and in the NE portion of the Bar using two independent and well tested procedures applied to the color-magnitude diagrams of their stellar populations resolved by means of deep HST photometry. We find that the Bar experienced a negligible star formation activity in the first few Gyr, followed by a dramatic enhancement from 6 to 4 Gyr ago and a nearly constant activity since then. The two examined fields differ both in the rate of star formation and in the ratio of recent over past activity, but share the very low level of initial activity and its sudden increase around 5 Gyr ago. The striking similarity between the timing of the enhancement and the timing of the major episode in the Large Magellanic Cloud is suggestive of a close encounter triggering star formation.Comment: 30 pages, 22 figures, accepted for publication in Ap

    The Proper Motion of the Large Magellanic Cloud using HST

    Get PDF
    We present a measurement of the systemic proper motion of the Large Magellanic Cloud (LMC) from astrometry with the High Resolution Camera (HRC) of the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope (HST). We observed LMC fields centered on 21 background QSOs that were discovered from their optical variability in the MACHO database. The QSOs are distributed homogeneously behind the central few degrees of the LMC. With 2 epochs of HRC data and a ~2 year baseline we determine the proper motion of the LMC to better than 5% accuracy: mu_W = -2.03 +/- 0.08 mas/yr; mu_N = 0.44 +/- 0.05 mas/yr. This is the most accurate proper motion measurement for any Milky Way satellite thus far. When combined with HI data from the Magellanic Stream this should provide new constraints on both the mass distribution of the Galactic Halo and models of the Stream.Comment: 40 pages, 15 figures, submitted to Ap

    Observational Constraints on the Modified Gravity Model (MOG) Proposed by Moffat: Using the Magellanic System

    Full text link
    A simple model for the dynamics of the Magellanic Stream (MS), in the framework of modified gravity models is investigated. We assume that the galaxy is made up of baryonic matter out of context of dark matter scenario. The model we used here is named Modified Gravity (MOG) proposed by Moffat (2005). In order to examine the compatibility of the overall properties of the MS under the MOG theory, the observational radial velocity profile of the MS is compared with the numerical results using the χ2\chi^2 fit method. In order to obtain the best model parameters, a maximum likelihood analysis is performed. We also compare the results of this model with the Cold Dark Matter (CDM) halo model and the other alternative gravity model that proposed by Bekenstein (2004), so called TeVeS. We show that by selecting the appropriate values for the free parameters, the MOG theory seems to be plausible to explain the dynamics of the MS as well as the CDM and the TeVeS models.Comment: 14 pages, 3 Figures, accepted in Int. J. Theor. Phy

    X-Ray Searches for Emission from the WHIM in the Galactic Halo and the Intergalactic Medium

    Full text link
    At least 50% of the baryons in the local universe are undetected and predicted to be in a hot dilute phase (1E5-1E7 K) in low and moderate overdensity environments. We searched for the predicted diffuse faint emission through shadowing observations whereby cool foreground gas absorbs more distant diffuse emission. Observations were obtained with Chandra and XMM-Newton. Using the cold gas in two galaxies, NGC 891 and NGC 5907, shadows were not detected and a newer observation of NGC 891 fails to confirm a previously reported X-ray shadow. Our upper limits lie above model predictions. For Local Group studies, we used a cloud in the Magellanic Stream and a compact high velocity cloud to search for a shadow. Instead of a shadow, the X-ray emission was brighter towards the Magellanic Stream cloud and there is a less significant brightness enhancement toward the other cloud also. The brightness enhancement toward the Magellanic Stream cloud is probably due to an interaction with a hot ambient medium that surrounds the Milky Way. We suggest that this interaction drives a shock into the cloud, heating the gas to X-ray emitting temperatures.Comment: 10 ApJ pages with 10 figure

    AN ULTRA-FAINT GALAXY CANDIDATE DISCOVERED in EARLY DATA from the MAGELLANIC SATELLITES SURVEY

    Get PDF
    We report a new ultra-faint stellar system found in Dark Energy Camera data from the first observing run of the Magellanic Satellites Survey (MagLiteS). MagLiteS J0644-5953 (Pictor II or Pic II) is a low surface brightness (μ = 28.5+1 -1 mag arcsec-2 within its half-light radius) resolved overdensity of old and metal-poor stars located at a heliocentric distance of 45+5 -4 kpc. The physical size (r1/2 = 46+15 -11) and low luminosity (Mv = -3.2+0.4 -0.5 mag) of this satellite are consistent with the locus of spectroscopically confirmed ultra-faint galaxies. MagLiteS J0644-5953 (Pic II) is located 11.3+3.1 -0.9 kpc from the Large Magellanic Cloud (LMC), and comparisons with simulation results in the literature suggest that this satellite was likely accreted with the LMC. The close proximity of MagLiteS J0644-5953 (Pic II) to the LMC also makes it the most likely ultra-faint galaxy candidate to still be gravitationally bound to the LMC.Peer reviewe

    The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream

    Get PDF
    In a companion paper by Koposov et al., RR Lyrae from \textit{Gaia} Data Release 2 are used to demonstrate that stars in the Orphan stream have velocity vectors significantly misaligned with the stream track, suggesting that it has received a large gravitational perturbation from a satellite of the Milky Way. We argue that such a mismatch cannot arise due to any realistic static Milky Way potential and then explore the perturbative effects of the Large Magellanic Cloud (LMC). We find that the LMC can produce precisely the observed motion-track mismatch and we therefore use the Orphan stream to measure the mass of the Cloud. We simultaneously fit the Milky Way and LMC potentials and infer that a total LMC mass of 1.380.24+0.27×1011M1.38^{+0.27}_{-0.24} \times10^{11}\,\rm{M_\odot} is required to bend the Orphan Stream, showing for the first time that the LMC has a large and measurable effect on structures orbiting the Milky Way. This has far-reaching consequences for any technique which assumes that tracers are orbiting a static Milky Way. Furthermore, we measure the Milky Way mass within 50 kpc to be 3.800.11+0.14×1011M3.80^{+0.14}_{-0.11}\times10^{11} M_\odot. Finally, we use these results to predict that, due to the reflex motion of the Milky Way in response to the LMC, the outskirts of the Milky Way's stellar halo should exhibit a bulk, upwards motion.Comment: 17 pages, 11 figures. Updated to version accepted to MNRAS after minor revisio

    Magnetic Field Structure of the Large Magellanic Cloud from Faraday Rotation Measures of Diffuse Polarized Emission

    Get PDF
    We present a study of the magnetic field of the Large Magellanic Cloud (LMC), carried out using diffuse polarized synchrotron emission data at 1.4 GHz acquired at the Parkes Radio Telescope and the Australia Telescope Compact Array. The observed diffuse polarized emission is likely to originate above the LMC disk on the near side of the galaxy. Consistent negative rotation measures (RMs) derived from the diffuse emission indicate that the line-of-sight magnetic field in the LMC's near-side halo is directed coherently away from us. In combination with RMs of extragalactic sources that lie behind the galaxy, we show that the LMC's large scale magnetic field is likely to be of quadrupolar geometry, consistent with the prediction of dynamo theory. On smaller scales, we identify two brightly polarized filaments southeast of the LMC, associated with neutral hydrogen arms. The filaments' magnetic field potentially aligns with the direction towards the Small Magellanic Cloud. We suggest that tidal interactions between the Small and the Large Magellanic Clouds in the past 10^9 years is likely to have shaped the magnetic field in these filaments.Comment: 42 pages, 22 figures, 2 tables. Accepted for publication in ApJ. Electronic version of Table 2 is available via email from the first autho
    corecore