2,778 research outputs found

    Extended transition rates and lifetimes in Al I and Al II from systematic multiconfiguration calculations

    Full text link
    Multiconfiguration Dirac-Hartree-Fock (MCDHF) and relativistic configuration interaction (RCI) calculations were performed for 28 and 78 states in neutral and singly ionized aluminium, respectively. In Al I, the configurations of interest are 3s2nl3s^2nl for n=3,4,5n=3,4,5 with l=0l=0 to 44, as well as 3s3p23s3p^2 and 3s26l3s^26l for l=0,1,2l=0,1,2. In Al II, the studied configurations are, besides the ground configuration 3s23s^2, 3snl3snl with n=3n=3 to 66 and l=0l=0 to 55, 3p23p^2, 3s7s3s7s, 3s7p3s7p and 3p3d3p3d. Valence and core-valence electron correlation effects are systematically accounted for through large configuration state function (CSF) expansions. Calculated excitation energies are found to be in excellent agreement with experimental data from the NIST database. Lifetimes and transition data for radiative electric dipole (E1) transitions are given and compared with results from previous calculations and available measurements, for both Al I and Al II. The computed lifetimes of Al I are in very good agreement with the measured lifetimes in high-precision laser spectroscopy experiments. The present calculations provide a substantial amount of updated atomic data, including transition data in the infrared region. This is particularly important since the new generation of telescopes are designed for this region. There is a significant improvement in accuracy, in particular for the more complex system of neutral Al I. The complete tables of transition data are available

    Spin glass behavior in an interacting gamma-Fe2O3 nanoparticle system

    Get PDF
    In this paper we investigate the superspin glass behavior of a concentrated assembly of interacting maghemite nanoparticles and compare it to that of canonical atomic spin glass systems. ac versus temperature and frequency measurements show evidence of a superspin glass transition taking place at low temperature. In order to fully characterize the superspin glass phase, the aging behavior of both the thermo-remanent magnetization (TRM) and ac susceptibility has been investigated. It is shown that the scaling laws obeyed by superspin glasses and atomic spin glasses are essentially the same, after subtraction of a superparamagnetic contribution from the superspin glass response functions. Finally, we discuss a possible origin of this superparamagnetic contribution in terms of dilute spin glass models

    Existence of a phase transition under finite magnetic field in the long-range RKKY Ising spin glass Dyx_{x}Y1x_{1-x}Ru2_{2}Si2_{2}

    Full text link
    A phase transition of a model compound of the long-range Ising spin glass (SG) Dyx_{x}Y1x_{1-x}Ru2_{2}Si2_{2}, where spins interact via the RKKY interaction, has been investigated. The static and the dynamic scaling analyses reveal that the SG phase transition in the model magnet belongs to the mean-field universality class. Moreover, the characteristic relaxation time in finite magnetic fields exhibits a critical divergent behavior as well as in zero field, indicating a stability of the SG phase in finite fields. The presence of the SG phase transition in field in the model magnet strongly syggests that the replica symmetry is broken in the long-range Ising SG.Comment: 4 pages, 4 figures, to be published in JPSJ (2010

    Constraining dark matter halo properties using lensed SNLS supernovae

    Full text link
    This paper exploits the gravitational magnification of SNe Ia to measure properties of dark matter haloes. The magnification of individual SNe Ia can be computed using observed properties of foreground galaxies and dark matter halo models. We model the dark matter haloes of the galaxies as truncated singular isothermal spheres with velocity dispersion and truncation radius obeying luminosity dependent scaling laws. A homogeneously selected sample of 175 SNe Ia from the first 3-years of the Supernova Legacy Survey (SNLS) in the redshift range 0.2 < z < 1 is used to constrain models of the dark matter haloes associated with foreground galaxies. The best-fitting velocity dispersion scaling law agrees well with galaxy-galaxy lensing measurements. We further find that the normalisation of the velocity dispersion of passive and star forming galaxies are consistent with empirical Faber-Jackson and Tully-Fisher relations, respectively. If we make no assumption on the normalisation of these relations, we find that the data prefer gravitational lensing at the 92 per cent confidence level. Using recent models of dust extinction we deduce that the impact of this effect on our results is very small. We also investigate the brightness scatter of SNe Ia due to gravitational lensing. The gravitational lensing scatter is approximately proportional to the SN Ia redshift. We find the constant of proportionality to be B = 0.055 +0.039 -0.041 mag (B < 0.12 mag at the 95 per cent confidence level). If this model is correct, the contribution from lensing to the intrinsic brightness scatter of SNe Ia is small for the SNLS sample.Comment: 11 pages, 7 figures, accepted for publication in MNRA

    Finite-size effects in amorphous Fe90Zr10/Al75Zr25 multilayers

    Full text link
    The thickness dependence of the magnetic properties of amorphous Fe90Zr10 layers has been explored using Fe90Zr10/Al75Zr25 multilayers. The Al75Zr25 layer thickness is kept at 40 \AA, while the thickness of the Fe90Zr10 layers is varied between 5 and 20 \AA. The thickness of the Al75Zr25 layers is sufficiently large to suppress any significant interlayer coupling. Both the Curie temperature and the spontaneous magnetization decrease non-linearly with decreasing thickness of the Fe90Zr10 layers. No ferromagnetic order is observed in the multilayer with 5 {\AA} Fe90Zr10 layers. The variation of the Curie temperature TcT_c with the Fe90Zr10 layer thickness tt is fitted with a finite-size scaling formula [1-\Tc(t)/\Tc(\infty)]=[(t-t')/t_0]^{-\lambda}, yielding λ=1.2\lambda=1.2, and a critical thickness t=6.5t'=6.5 \AA, below which the Curie temperature is zero.Comment: 8 pages, 8 figure

    Harmonic-generation Beyond the Saturation Intensity In Helium

    Get PDF

    Spin Glasses: Model systems for non-equilibrium dynamics

    Full text link
    Spin glasses are frustrated magnetic systems due to a random distribution of ferro- and antiferromagnetic interactions. An experimental three dimensional (3d) spin glass exhibits a second order phase transition to a low temperature spin glass phase regardless of the spin dimensionality. In addition, the low temperature phase of Ising and Heisenberg spin glasses exhibits similar non-equilibrium dynamics and an infinitely slow approach towards a thermodynamic equilibrium state. There are however significant differences in the detailed character of the dynamics as to memory and rejuvenation phenomena and the influence of critical dynamics on the behaviour. In this article, some aspects of the non-equilibrium dynamics of an Ising and a Heisenberg spin glass are briefly reviewed and some comparisons are made to other glassy systems that exhibit magnetic non-equilibrium dynamics.Comment: To appear in J. Phys.: Condens. Matter, Proceedings from HFM2003, Grenobl

    Pinholes May Mimic Tunneling

    Full text link
    Interest in magnetic-tunnel junctions has prompted a re-examination of tunneling measurements through thin insulating films. In any study of metal-insulator-metal trilayers, one tries to eliminate the possibility of pinholes (small areas over which the thickness of the insulator goes to zero so that the upper and lower metals of the trilayer make direct contact). Recently, we have presented experimental evidence that ferromagnet-insulator-normal trilayers that appear from current-voltage plots to be pinhole-free may nonetheless in some cases harbor pinholes. Here, we show how pinholes may arise in a simple but realistic model of film deposition and that purely classical conduction through pinholes may mimic one aspect of tunneling, the exponential decay in current with insulating thickness.Comment: 9 pages, 3 figures, plain TeX; submitted to Journal of Applied Physic

    Tentative detection of the gravitational magnification of type Ia supernovae

    Get PDF
    The flux from distant type Ia supernovae (SN) is likely to be amplified or de-amplified by gravitational lensing due to matter distributions along the line-of-sight. A gravitationally lensed SN would appear brighter or fainter than the average SN at a particular redshift. We estimate the magnification of 26 SNe in the GOODS fields and search for a correlation with the residual magnitudes of the SNe. The residual magnitude, i.e. the difference between observed and average magnitude predicted by the "concordance model" of the Universe, indicates the deviation in flux from the average SN. The linear correlation coefficient for this sample is r=0.29. For a similar, but uncorrelated sample, the probability of obtaining a correlation coefficient equal to or higher than this value is ~10%, i.e. a tentative detection of lensing at ~90% confidence level. Although the evidence for a correlation is weak, our result is in accordance with what could be expected given the small size of the sample.Comment: 7 pages, 2 figure

    Extended atomic data for oxygen abundance analyses

    Full text link
    As the most abundant element in the universe after hydrogen and helium, oxygen plays a key role in planetary, stellar, and galactic astrophysics. Its abundance is especially influential on stellar structure and evolution, and as the dominant opacity contributor at the base of the Sun's convection zone it is central to the discussion around the solar modelling problem. However, abundance analyses require complete and reliable sets of atomic data. We present extensive atomic data for O I, by using the multiconfiguration Dirac-Hartree-Fock and relativistic configuration interaction methods. Lifetimes and transition probabilities for radiative electric dipole transitions are given and compared with results from previous calculations and available measurements. The accuracy of the computed transition rates is evaluated by the differences between the transition rates in Babushkin and Coulomb gauges, as well as by a cancellation factor analysis. Out of the 989 computed transitions in this work, 205 are assigned to the accuracy classes AA-B, that is, with uncertainties less than 10%, following the criteria defined by the National Institute of Standards and Technology Atomic Spectra Database. We discuss the influence of the new log(gf) values on the solar oxygen abundance and ultimately advocate logϵO=8.70±0.04\log\epsilon_{\mathrm{O}}=8.70\pm0.04.Comment: 13 pages, 5 figures; Accepted for publication in Astronomy & Astrophysic
    corecore