2,778 research outputs found
Extended transition rates and lifetimes in Al I and Al II from systematic multiconfiguration calculations
Multiconfiguration Dirac-Hartree-Fock (MCDHF) and relativistic configuration
interaction (RCI) calculations were performed for 28 and 78 states in neutral
and singly ionized aluminium, respectively. In Al I, the configurations of
interest are for with to , as well as and
for . In Al II, the studied configurations are, besides the
ground configuration , with to and to , ,
, and . Valence and core-valence electron correlation
effects are systematically accounted for through large configuration state
function (CSF) expansions. Calculated excitation energies are found to be in
excellent agreement with experimental data from the NIST database. Lifetimes
and transition data for radiative electric dipole (E1) transitions are given
and compared with results from previous calculations and available
measurements, for both Al I and Al II. The computed lifetimes of Al I are in
very good agreement with the measured lifetimes in high-precision laser
spectroscopy experiments. The present calculations provide a substantial amount
of updated atomic data, including transition data in the infrared region. This
is particularly important since the new generation of telescopes are designed
for this region. There is a significant improvement in accuracy, in particular
for the more complex system of neutral Al I. The complete tables of transition
data are available
Spin glass behavior in an interacting gamma-Fe2O3 nanoparticle system
In this paper we investigate the superspin glass behavior of a concentrated
assembly of interacting maghemite nanoparticles and compare it to that of
canonical atomic spin glass systems. ac versus temperature and frequency
measurements show evidence of a superspin glass transition taking place at low
temperature. In order to fully characterize the superspin glass phase, the
aging behavior of both the thermo-remanent magnetization (TRM) and ac
susceptibility has been investigated. It is shown that the scaling laws obeyed
by superspin glasses and atomic spin glasses are essentially the same, after
subtraction of a superparamagnetic contribution from the superspin glass
response functions. Finally, we discuss a possible origin of this
superparamagnetic contribution in terms of dilute spin glass models
Existence of a phase transition under finite magnetic field in the long-range RKKY Ising spin glass DyYRuSi
A phase transition of a model compound of the long-range Ising spin glass
(SG) DyYRuSi, where spins interact via the RKKY
interaction, has been investigated. The static and the dynamic scaling analyses
reveal that the SG phase transition in the model magnet belongs to the
mean-field universality class. Moreover, the characteristic relaxation time in
finite magnetic fields exhibits a critical divergent behavior as well as in
zero field, indicating a stability of the SG phase in finite fields. The
presence of the SG phase transition in field in the model magnet strongly
syggests that the replica symmetry is broken in the long-range Ising SG.Comment: 4 pages, 4 figures, to be published in JPSJ (2010
Constraining dark matter halo properties using lensed SNLS supernovae
This paper exploits the gravitational magnification of SNe Ia to measure
properties of dark matter haloes. The magnification of individual SNe Ia can be
computed using observed properties of foreground galaxies and dark matter halo
models. We model the dark matter haloes of the galaxies as truncated singular
isothermal spheres with velocity dispersion and truncation radius obeying
luminosity dependent scaling laws. A homogeneously selected sample of 175 SNe
Ia from the first 3-years of the Supernova Legacy Survey (SNLS) in the redshift
range 0.2 < z < 1 is used to constrain models of the dark matter haloes
associated with foreground galaxies. The best-fitting velocity dispersion
scaling law agrees well with galaxy-galaxy lensing measurements. We further
find that the normalisation of the velocity dispersion of passive and star
forming galaxies are consistent with empirical Faber-Jackson and Tully-Fisher
relations, respectively. If we make no assumption on the normalisation of these
relations, we find that the data prefer gravitational lensing at the 92 per
cent confidence level. Using recent models of dust extinction we deduce that
the impact of this effect on our results is very small. We also investigate the
brightness scatter of SNe Ia due to gravitational lensing. The gravitational
lensing scatter is approximately proportional to the SN Ia redshift. We find
the constant of proportionality to be B = 0.055 +0.039 -0.041 mag (B < 0.12 mag
at the 95 per cent confidence level). If this model is correct, the
contribution from lensing to the intrinsic brightness scatter of SNe Ia is
small for the SNLS sample.Comment: 11 pages, 7 figures, accepted for publication in MNRA
Finite-size effects in amorphous Fe90Zr10/Al75Zr25 multilayers
The thickness dependence of the magnetic properties of amorphous Fe90Zr10
layers has been explored using Fe90Zr10/Al75Zr25 multilayers. The Al75Zr25
layer thickness is kept at 40 \AA, while the thickness of the Fe90Zr10 layers
is varied between 5 and 20 \AA. The thickness of the Al75Zr25 layers is
sufficiently large to suppress any significant interlayer coupling. Both the
Curie temperature and the spontaneous magnetization decrease non-linearly with
decreasing thickness of the Fe90Zr10 layers. No ferromagnetic order is observed
in the multilayer with 5 {\AA} Fe90Zr10 layers. The variation of the Curie
temperature with the Fe90Zr10 layer thickness is fitted with a
finite-size scaling formula [1-\Tc(t)/\Tc(\infty)]=[(t-t')/t_0]^{-\lambda},
yielding , and a critical thickness \AA, below which the
Curie temperature is zero.Comment: 8 pages, 8 figure
Spin Glasses: Model systems for non-equilibrium dynamics
Spin glasses are frustrated magnetic systems due to a random distribution of
ferro- and antiferromagnetic interactions. An experimental three dimensional
(3d) spin glass exhibits a second order phase transition to a low temperature
spin glass phase regardless of the spin dimensionality. In addition, the low
temperature phase of Ising and Heisenberg spin glasses exhibits similar
non-equilibrium dynamics and an infinitely slow approach towards a
thermodynamic equilibrium state. There are however significant differences in
the detailed character of the dynamics as to memory and rejuvenation phenomena
and the influence of critical dynamics on the behaviour. In this article, some
aspects of the non-equilibrium dynamics of an Ising and a Heisenberg spin glass
are briefly reviewed and some comparisons are made to other glassy systems that
exhibit magnetic non-equilibrium dynamics.Comment: To appear in J. Phys.: Condens. Matter, Proceedings from HFM2003,
Grenobl
Pinholes May Mimic Tunneling
Interest in magnetic-tunnel junctions has prompted a re-examination of
tunneling measurements through thin insulating films. In any study of
metal-insulator-metal trilayers, one tries to eliminate the possibility of
pinholes (small areas over which the thickness of the insulator goes to zero so
that the upper and lower metals of the trilayer make direct contact). Recently,
we have presented experimental evidence that ferromagnet-insulator-normal
trilayers that appear from current-voltage plots to be pinhole-free may
nonetheless in some cases harbor pinholes. Here, we show how pinholes may arise
in a simple but realistic model of film deposition and that purely classical
conduction through pinholes may mimic one aspect of tunneling, the exponential
decay in current with insulating thickness.Comment: 9 pages, 3 figures, plain TeX; submitted to Journal of Applied
Physic
Tentative detection of the gravitational magnification of type Ia supernovae
The flux from distant type Ia supernovae (SN) is likely to be amplified or
de-amplified by gravitational lensing due to matter distributions along the
line-of-sight. A gravitationally lensed SN would appear brighter or fainter
than the average SN at a particular redshift. We estimate the magnification of
26 SNe in the GOODS fields and search for a correlation with the residual
magnitudes of the SNe. The residual magnitude, i.e. the difference between
observed and average magnitude predicted by the "concordance model" of the
Universe, indicates the deviation in flux from the average SN. The linear
correlation coefficient for this sample is r=0.29. For a similar, but
uncorrelated sample, the probability of obtaining a correlation coefficient
equal to or higher than this value is ~10%, i.e. a tentative detection of
lensing at ~90% confidence level. Although the evidence for a correlation is
weak, our result is in accordance with what could be expected given the small
size of the sample.Comment: 7 pages, 2 figure
Extended atomic data for oxygen abundance analyses
As the most abundant element in the universe after hydrogen and helium,
oxygen plays a key role in planetary, stellar, and galactic astrophysics. Its
abundance is especially influential on stellar structure and evolution, and as
the dominant opacity contributor at the base of the Sun's convection zone it is
central to the discussion around the solar modelling problem. However,
abundance analyses require complete and reliable sets of atomic data. We
present extensive atomic data for O I, by using the multiconfiguration
Dirac-Hartree-Fock and relativistic configuration interaction methods.
Lifetimes and transition probabilities for radiative electric dipole
transitions are given and compared with results from previous calculations and
available measurements. The accuracy of the computed transition rates is
evaluated by the differences between the transition rates in Babushkin and
Coulomb gauges, as well as by a cancellation factor analysis. Out of the 989
computed transitions in this work, 205 are assigned to the accuracy classes
AA-B, that is, with uncertainties less than 10%, following the criteria defined
by the National Institute of Standards and Technology Atomic Spectra Database.
We discuss the influence of the new log(gf) values on the solar oxygen
abundance and ultimately advocate .Comment: 13 pages, 5 figures; Accepted for publication in Astronomy &
Astrophysic
- …