134 research outputs found

    Anticipated Change in the Nigerian Capital Market and Its Implication on Economic Growth

    Get PDF
    This paper examines the Anticipated Change in the Nigerian Capital Market and its implications on Economic Growth. Data were collected through secondary source and analyzed using multiple regression and descriptive method of statistical analysis. The study reveals that market capitalization, value of stocks and interest rate has significant impact on the GDP. The paper recommends that government should step up investor’s confidence and activities in the capital markets so that it could contribute significantly to economic growth hence, national development. Keywords: Market Capitalization, Economic Growth, Capital Market, Nigerian Stock Exchange, Structural Adjustment Programme, Gross Domestic Produc

    Immunoinformatics assisted design of a multi-epitope kit for detecting <i>Cronobacter sakazakii</i> in powdered infant formula

    Get PDF
    Objectives: Cronobacter sakazakii, formerly Enterobacter sakazakii, is an emerging ubiquitous and opportunistic foodborne pathogen with a high mortality rate. It has been implicated in cases of meningitis, septicaemia, and necrotizing enterocolitis among infants worldwide in association with powdered infant formula (PIF). This study was an insilico designed peptide base kit framework, using immunoinformatic techniques for quick detection of C. sakazakii in PIF. Materials and Methods: In the present study, a peptide-based kit was designed with a bioinformatic technique to rapidly identify C. sakazakii in PIF using flhE, secY, and bcsC, which are genes responsible for its biofilm formation, as target genes. The antigenicity, membrane topology, and the presence of signal peptides of the target genes were analysed using VaxiJen, DeepTMHMM, and SignalP servers. To provide stability and flexibility to the multiple-epitope construct, the linear B cells and helper T cells (IL-4 (interleukin 4) and IL-10 (interleukin 10) inducing epitopes) were linked with a GSGSG linker followed by the addition of protein disulphide bonds. To ascertain specificity, the multi-epitope construct was molecularly docked against genes from sources other than PIF, like alfalfa, and the environment, with PIF being the highest: –328.48. Finally, the codons were modified using the pET28a(+) vector, and the resultant multi-epitope construct was successfully cloned in silico. Results: The final construct had a length of 486 bp, an instability index of 23.26, a theoretical pI of 9.34, a molecular weight of 16.5 kDa, and a Z-score of –3.41. Conclusions: The multi-epitope peptide construct could be a conceptual framework for creating a C. sakazakii peptide-based detection kit, which has the potential to provide fast and efficient detection. However, there is a need for additional validation through the in vitro and in vivo techniques

    Discovery of the magnetic field in the pulsating B star beta Cephei

    Get PDF
    Although the star itself is not He enriched, the periodicity and the variability in the UV wind lines of the pulsating B1 IV star beta Cep are similar to what is observed in magnetic He-peculiar B stars, suggesting that beta Cep is magnetic. We searched for a magnetic field using spectropolarimetry. From UV spectroscopy, we analysed the wind variability and investigated the correlation with the magnetic data. Using 130 time-resolved circular polarisation spectra, obtained with the MuSiCoS spectropolarimeter at the 2m TBL from 1998 until 2005, we applied the least-squares deconvolution method on the Stokes V spectra and derived the longitudinal component of the integrated magnetic field over the visible hemisphere of the star. We performed a period analysis on the magnetic data and on EW measurements of UV wind lines obtained over 17 years. We also analysed the short- and long-term radial velocity variations, which are due to the pulsations and the 90-year binary motion. beta Cep hosts a sinusoidally varying magnetic field with an amplitude 97(4) G and an average value -6(3) G. From the UV wind line variability, we derive a period of 12.00075(11) days, which is the rotation period of the star, and is compatible with the observed magnetic modulation. Phases of maximum and minimum field match those of maximum emission in the UV wind lines, strongly supporting an oblique magnetic-rotator model. We discuss the magnetic behaviour as a function of pulsation behaviour and UV line variability. This paper presents the analysis of the first confirmed detection of a dipolar magnetic field in an upper main-sequence pulsating star. Maximum wind absorption originates in the magnetic equatorial plane. Maximum emission occurs when the magnetic north pole points to the Earth. Radial velocities agree with the ~90-y orbit around its Be-star binary companion.Comment: 14 pages, 10 figures, 5 table

    Magnetic field measurements and wind-line variability of OB-type stars

    Get PDF
    Context. The first magnetic fields in O- and B-type stars that do not belong to the Bp-star class, have been discovered. The cyclic UV wind-line variability, which has been observed in a significant fraction of early-type stars, is likely to be related to such magnetic fields. Aims. We attempt to improve our understanding of massive-star magnetic fields, and observe twenty-five carefully-selected, OB-type stars. Methods. Of these stars we obtain 136 magnetic field strength measurements. We present the UV wind-line variability of all selected targets and summarise spectropolarimetric observations acquired using the MUSICOS spectropolarimeter, mounted at the TBL, Pic du Midi, between December 1998 and November 2004. From the average Stokes I and V line profiles, derived using the LSD method, we measure the magnetic field strengths, radial velocities, and first moment of the line profiles. Results. No significant magnetic field is detected in any OB-type star that we observed. Typical 1{\sigma} errors are between 15 and 200 G. A possible magnetic-field detection for the O9V star 10 Lac remains uncertain, because the field measurements depend critically on the fringe- effect correction in the Stokes V spectra. We find excess emission in UV-wind lines, centred about the rest wavelength, to be a new indirect indicator of the presence of a magnetic field in early B-type stars. The most promising candidates to host magnetic fields are the B-type stars {\delta} Cet and 6 Cep, and a number of O stars. Conclusions. Although some O and B stars have strong dipolar field, which cause periodic variability in the UV wind-lines, such strong fields are not widespread. If the variability observed in the UV wind-lines of OB stars is generally caused by surface magnetic fields, these fields are either weak (<~few hundred G) or localised.Comment: A&A publishe

    Multisite spectroscopic seismic study of the beta Cep star V2052 Oph: inhibition of mixing by its magnetic field

    Get PDF
    We used extensive ground-based multisite and archival spectroscopy to derive observational constraints for a seismic modelling of the magnetic beta Cep star V2052 Ophiuchi. The line-profile variability is dominated by a radial mode (f_1=7.14846 d^{-1}) and by rotational modulation (P_rot=3.638833 d). Two non-radial low-amplitude modes (f_2=7.75603 d^{-1} and f_3=6.82308 d^{-1}) are also detected. The four periodicities that we found are the same as the ones discovered from a companion multisite photometric campaign (Handler et al. 2012) and known in the literature. Using the photometric constraints on the degrees l of the pulsation modes, we show that both f_2 and f_3 are prograde modes with (l,m)=(4,2) or (4,3). These results allowed us to deduce ranges for the mass (M \in [8.2,9.6] M_o) and central hydrogen abundance (X_c \in [0.25,0.32]) of V2052 Oph, to identify the radial orders n_1=1, n_2=-3 and n_3=-2, and to derive an equatorial rotation velocity v_eq \in [71,75] km s^{-1}. The model parameters are in full agreement with the effective temperature and surface gravity deduced from spectroscopy. Only models with no or mild core overshooting (alpha_ov \in [0,0.15] local pressure scale heights) can account for the observed properties. Such a low overshooting is opposite to our previous modelling results for the non-magnetic beta Cep star theta Oph having very similar parameters, except for a slower surface rotation rate. We discuss whether this result can be explained by the presence of a magnetic field in V2052 Oph that inhibits mixing in its interior.Comment: 12 pages, 6 figures and 5 tables; accepted for publication in MNRAS on 2012 August 1

    Urban groundwater quality in Africa : benefits and challenges

    Get PDF
    Most urban centres in Africa rely on groundwater, in Southern Africa it is estimated that at least 36% of the population relies on groundwater, this number is much larger for many other settlements in Africa. Urban water supplies are reliant on local groundwater sources to supply 25% of water use, from both private and public/municipal sources. Groundwater is important even in areas where groundwater abstraction is limited by low productivity groundwater stores such as those found in hard-rock settings (e.g. granites). Urban centres are a focus for a wide range of human activities past and present that can alter groundwater quality with potential impacts on subsequent groundwater uses. Once contaminated, groundwater can be challenging to clean up. Despite these challenges, groundwater is often of better quality compared to surface water alternatives in urban settings. Groundwater is generally well protected from surface contamination: as water percolates through the soil and deeper rock some contaminants (e.g. bacteria) may be removed. In contrast to surface water pollution, groundwater quality changes are often gradual, allowing scope for the problem to be assessed and interventions and adaptations to be planned and undertaken if recognised early. Even when groundwater is contaminated (e.g. by bacteria or organic contaminants) these are often detected at low concentrations. Compared to surface waters treatment, costs are often lower and simpler treatment solutions are possible due to the reduced pollution loads and fluctuations in groundwaters. Access to groundwater is widely dispersed compared to alternative sources (lakes, rivers and piped supplies). This offers a clear potential to expand groundwater use in many towns and cities to enhance water security (e.g. via public water supply, piped systems with standpipes, self-supply such as private wells and in some cases tankered or sachet groundwater)

    A review of combined advanced oxidation technologies for the removal of organic pollutants from water

    Get PDF
    Water pollution through natural and anthropogenic activities has become a global problem causing short-and long-term impact on human and ecosystems. Substantial quantity of individual or mixtures of organic pollutants enter the surface water via point and nonpoint sources and thus affect the quality of freshwater. These pollutants are known to be toxic and difficult to remove by mere biological treatment. To date, most researches on the removal of organic pollutants from wastewater were based on the exploitation of individual treatment process. This single-treatment technology has inherent challenges and shortcomings with respect to efficiency and economics. Thus, application of two advanced treatment technologies characterized with high efficiency with respect to removal of primary and disinfection by-products in wastewater is desirable. This review article focuses on the application of integrated technologies such as electrohydraulic discharge with heterogeneous photocatalysts or sonophotocatalysis to remove target pollutants. The information gathered from more than 100 published articles, mostly laboratories studies, shows that process integration effectively remove and degrade recalcitrant toxic contaminants in wastewater better than single-technology processing. This review recommends an improvement on this technology (integrated electrohydraulic discharge with heterogeneous photocatalysts) viz-a-vis cost reduction in order to make it accessible and available in the rural and semi-urban settlement. Further recommendation includes development of an economic model to establish the cost implications of the combined technology. Proper monitoring, enforcement of the existing environmental regulations, and upgrading of current wastewater treatment plants with additional treatment steps such as photocatalysis and ozonation will greatly assist in the removal of environmental toxicants

    Unexpected removal of the most neutral cationic pharmaceutical in river waters

    Get PDF
    Contamination of surface waters by pharmaceuticals is now widespread. There are few data on their environmental behaviour, particularly for those which are cationic at typical surface water pH. As the external surfaces of bacterio-plankton cells are hydrophilic with a net negative charge, it was anticipated that bacterio-plankton in surface-waters would preferentially remove the most extensively-ionised cation at a given pH. To test this hypothesis, the persistence of four, widely-used, cationic pharmaceuticals, chloroquine, quinine, fluphenazine and levamisole, was assessed in batch microcosms, comprising water and bacterio-plankton, to which pharmaceuticals were added and incubated for 21 days. Results show that levamisole concentrations decreased by 19 % in microcosms containing bacterio-plankton, and by 13 % in a parallel microcosm containing tripeptide as a priming agent. In contrast to levamisole, concentrations of quinine, chloroquine and fluphenazine were unchanged over 21 days in microcosms containing bacterio-plankton. At the river-water pH, levamisole is 28 % cationic, while quinine is 91–98 % cationic, chloroquine 99 % cationic and fluphenazine 72–86 % cationic. Thus, the most neutral compound, levamisole, showed greatest removal, contradicting the expected bacterio-plankton preference for ionised molecules. However, levamisole was the most hydrophilic molecule, based on its octanol–water solubility coefficient (K ow). Overall, the pattern of pharmaceutical behaviour within the incubations did not reflect the relative hydrophilicity of the pharmaceuticals predicted by the octanol–water distribution coefficient, D ow, suggesting that improved predictive power, with respect to modelling bioaccumulation, may be needed to develop robust environmental risk assessments for cationic pharmaceuticals
    • …
    corecore