1,124 research outputs found

    Photoinjector-generation of a flat electron beam with transverse emittance ratio of 100

    Full text link
    The generation of a flat electron beam directly from a photoinjector is an attractive alternative to the electron damping ring as envisioned for linear colliders. It also has potential applications to light sources such as the generation of ultra-short x-ray pulses or Smith-Purcell free electron lasers. In this Letter, we report on the experimental generation of a flat-beam with a measured transverse emittance ratio of 100±20.2100\pm 20.2 for a bunch charge of ∼0.5\sim 0.5 nC; the smaller measured normalized root-mean-square emittance is ∼0.4\sim 0.4 μ\mum and is limited by the resolution of our experimental setup. The experimental data, obtained at the Fermilab/NICADD Photoinjector Laboratory, are compared with numerical simulations and the expected scaling laws.Comment: 5 pages, 3 figure

    Treatment of calibration uncertainty in multi-baseline cross-correlation searches for gravitational waves

    Get PDF
    Uncertainty in the calibration of gravitational wave (GW) detector data leads to systematic errors, which must be accounted for in setting limits on the strength of GW signals. When cross-correlation measurements are made using data from a pair of instruments, as in searches for a stochastic GW background, the calibration uncertainties of the individual instruments can be combined into an uncertainty associated with the pair. With the advent of multi-baseline GW observation (e.g., networks consisting of multiple detectors such as the LIGO observatories and Virgo), a more sophisticated treatment is called for. We have described how the correlations between calibration factors associated with different pairs can be taken into account by marginalizing over the uncertainty associated with each instrument

    Gravitational waves from Sco X-1: A comparison of search methods and prospects for detection with advanced detectors

    Get PDF
    The low-mass X-ray binary Scorpius X-1 (Sco X-1) is potentially the most luminous source of continuous gravitational-wave radiation for interferometers such as LIGO and Virgo. For low-mass X-ray binaries this radiation would be sustained by active accretion of matter from its binary companion. With the Advanced Detector Era fast approaching, work is underway to develop an array of robust tools for maximizing the science and detection potential of Sco X-1. We describe the plans and progress of a project designed to compare the numerous independent search algorithms currently available. We employ a mock-data challenge in which the search pipelines are tested for their relative proficiencies in parameter estimation, computational efficiency, robust- ness, and most importantly, search sensitivity. The mock-data challenge data contains an ensemble of 50 Scorpius X-1 (Sco X-1) type signals, simulated within a frequency band of 50-1500 Hz. Simulated detector noise was generated assuming the expected best strain sensitivity of Advanced LIGO and Advanced VIRGO (4×10−244 \times 10^{-24} Hz−1/2^{-1/2}). A distribution of signal amplitudes was then chosen so as to allow a useful comparison of search methodologies. A factor of 2 in strain separates the quietest detected signal, at 6.8×10−266.8 \times 10^{-26} strain, from the torque-balance limit at a spin frequency of 300 Hz, although this limit could range from 1.2×10−251.2 \times 10^{-25} (25 Hz) to 2.2×10−262.2 \times 10^{-26} (750 Hz) depending on the unknown frequency of Sco X-1. With future improvements to the search algorithms and using advanced detector data, our expectations for probing below the theoretical torque-balance strain limit are optimistic.Comment: 33 pages, 11 figure

    Turbulent small-scale neutral and ion density fluctuations as measured during MAC/Epsilon

    Get PDF
    During the MAC/Epsilon campaign (Fall 1987, from Andoya, Northern Norway, 69 N, 16 E) a total of four altitude profiles of neutral gas number densities and six profiles of ion number densities were measured with high spatial resolution in the height range from 60 to 120 km. First results of these rocket-borne experiments are presented with emphasis on small scale turbulent density variations and related turbulent parameter as structure function constants and energy dissipation rates

    Generation of angular-momentum-dominated electron beams from a photoinjector

    Get PDF
    Various projects under study require an angular-momentum-dominated electron beam generated by a photoinjector. Some of the proposals directly use the angular-momentum-dominated beams (e.g. electron cooling of heavy ions), while others require the beam to be transformed into a flat beam (e.g. possible electron injectors for light sources and linear colliders). In this paper, we report our experimental study of an angular-momentum-dominated beam produced in a photoinjector, addressing the dependencies of angular momentum on initial conditions. We also briefly discuss the removal of angular momentum. The results of the experiment, carried out at the Fermilab/NICADD Photoinjector Laboratory, are found to be in good agreement with theoretical and numerical models.Comment: 8 pages, 7 figures, submitted to Phys. Rev. ST Accel. Beam

    Multi-messenger astronomy with a Southern-Hemisphere gravitational-wave observatory

    Full text link
    Joint observations of gravitational waves and electromagnetic counterparts will answer questions about cosmology, gamma-ray bursts, and the behaviour of matter at supranuclear densities. The addition of a Southern-Hemisphere gravitational-wave observatory to proposed global networks creates a longer baseline, which is beneficial for sky localisation. We analyse how an observatory in Australia can enhance the multi-messenger astronomy capabilities of future networks. We estimate the number of binary neutron star mergers with joint observations of gravitational waves and kilonova counterparts detectable by the Vera C. Rubin Observatory. First, we consider a network of upgrades to current observatories. Adding an Australian observatory to a three-observatory network (comprising two observatories in the USA and one in Europe) boosts the rate of joint observations from 2.5−2.0+4.52.5^{+4.5}_{-2.0} per year to 5.6−4.5+105.6^{+10}_{-4.5} per year (a factor of two improvement). Then, we consider a network of next-generation observatories. Adding a 2020 km Australian observatory to a global network of a Cosmic Explorer 4040 km in the USA and an Einstein Telescope in Europe only marginally increases the rate from 40−32+7140^{+71}_{-32} per year to 44−35+7944^{+79}_{-35} per year (a factor of 1.1 improvement). The addition of an Australian observatory, however, ensures that at least two observatories are online far more often. When the Cosmic Explorer 4040 km is offline for a major upgrade, the Australian observatory increases the joint observation rate from 0.5−0.4+0.80.5^{+0.8}_{-0.4} per year to 38−30+6838^{+68}_{-30} per year (a factor of 82 improvement). When the Einstein Telescope is offline, the joint observation rate increases from 0.2−0.1+0.30.2^{+0.3}_{-0.1} per year to 19−15+3419^{+34}_{-15} per year (a factor of 113 improvement). We sketch out the broader science case for a Southern-Hemisphere gravitational-wave observatory.Comment: v1, 13 pages, 7 figures. Submitted to PRD on August 24 202

    Morphological Instabilities in a growing Yeast Colony: Experiment and Theory

    Get PDF
    We study the growth of colonies of the yeast Pichia membranaefaciens on agarose film. The growth conditions are controlled in a setup where nutrients are supplied through an agarose film suspended over a solution of nutrients. As the thickness of the agarose film is varied, the morphology of the front of the colony changes. The growth of the front is modeled by coupling it to a diffusive field of inhibitory metabolites. Qualitative agreement with experiments suggests that such a coupling is responsible for the observed instability of the front.Comment: RevTex, 4 pages and 3 figure

    Detectability of eccentric compact binary coalescences with advanced gravitational-wave detectors

    Get PDF
    Compact binary coalescences are a promising source of gravitational waves for second-generation interferometric gravitational-wave detectors such as advanced LIGO and advanced Virgo. While most binaries are expected to possess circular orbits, some may be eccentric, for example, if they are formed through dynamical capture. Eccentric orbits can create difficulty for matched filtering searches due to the challenges of creating effective template banks to detect these signals. In previous work, we showed how seedless clustering can be used to detect low-mass (M_total≤10M_⊙) compact binary coalescences for both spinning and eccentric systems, assuming a circular post-Newtonian expansion. Here, we describe a parametrization that is designed to maximize sensitivity to low-eccentricity (0≤ε≤0.6) systems, derived from the analytic equations. We show that this parametrization provides a robust and computationally efficient method for detecting eccentric low-mass compact binaries. Based on these results, we conclude that advanced detectors will have a chance of detecting eccentric binaries if optimistic models prove true. However, a null observation is unlikely to firmly rule out models of eccentric binary populations

    Protostellar collapse: rotation and disk formation

    Full text link
    We present some important conclusions from recent calculations pertaining to the collapse of rotating molecular cloud cores with axial symmetry, corresponding to evolution of young stellar objects through classes 0 and begin of class I. Three main issues have been addressed: (1) The typical timescale for building up a preplanetary disk - once more it turned out that it is of the order of one free-fall time which is decisively shorter than the widely assumed timescale related to the so-called 'inside-out collapse'; (2) Redistribution of angular momentum and the accompanying dissipation of kinetic (rotational) energy - together these processes govern the mechanical and thermal evolution of the protostellar core to a large extent; (3) The origin of calcium-aluminium-rich inclusions (CAIs) - due to the specific pattern of the accretion flow, material that has undergone substantial chemical and mineralogical modifications in the hot (exceeding 900 K) interior of the protostellar core may have a good chance to be advectively transported outward into the cooler remote parts (beyond 4 AU, say) of the growing disk and to survive there until it is incorporated into a meteoritic body.Comment: 4 pages, 4 figure
    • …
    corecore