We present some important conclusions from recent calculations pertaining to
the collapse of rotating molecular cloud cores with axial symmetry,
corresponding to evolution of young stellar objects through classes 0 and begin
of class I. Three main issues have been addressed: (1) The typical timescale
for building up a preplanetary disk - once more it turned out that it is of the
order of one free-fall time which is decisively shorter than the widely assumed
timescale related to the so-called 'inside-out collapse'; (2) Redistribution of
angular momentum and the accompanying dissipation of kinetic (rotational)
energy - together these processes govern the mechanical and thermal evolution
of the protostellar core to a large extent; (3) The origin of
calcium-aluminium-rich inclusions (CAIs) - due to the specific pattern of the
accretion flow, material that has undergone substantial chemical and
mineralogical modifications in the hot (exceeding 900 K) interior of the
protostellar core may have a good chance to be advectively transported outward
into the cooler remote parts (beyond 4 AU, say) of the growing disk and to
survive there until it is incorporated into a meteoritic body.Comment: 4 pages, 4 figure