1,408 research outputs found

    An ensemble approach to assess hydrological models’ contribution to uncertainties in the analysis of climate change impact on water resources

    Get PDF
    Over the recent years, several research efforts investigated the impact of climate change on water resources for different regions of the world. The projection of future river flows is affected by different sources of uncertainty in the hydro-climatic modelling chain. One of the aims of the QBic3 5 project (Que´bec-Bavarian International Collaboration on Climate Change) is to assess the contribution to uncertainty of hydrological models by using an ensemble of hydrological models presenting a diversity of structural complexity (i.e. lumped, semi distributed and distributed models). The study investigates two humid, mid-latitude catchments with natural flow conditions; one located in 10 Southern Que´bec (Canada) and one in Southern Bavaria (Germany). Daily flow is simulated with four different hydrological models, forced by outputs from regional climate models driven by a given number of GCMs’ members over a reference (1971–2000) and a future (2041–2070) periods. The results show that the choice of the hydrological model does strongly affect the climate change response of selected hydrological indicators, especially those related to low flows. Indicators related to high flows seem less sensitive on the choice of the hydrological model. Therefore, the computationally less demanding models (usually simple, lumped and conceptual) give a significant level of trust for high and overall mean flows

    On the need for bias correction in regional climate scenarios to assess climate change impacts on river runoff

    Get PDF
    In climate change impact research, the assessment of future river runoff as well as the catchment scale water balance is impeded by different sources of modeling uncertainty. Some research has already been done in order to quantify the uncertainty of climate 5 projections originating from the climate models and the downscaling techniques as well as from the internal variability evaluated from climate model member ensembles. Yet, the use of hydrological models adds another layer of incertitude. Within the QBic3 project (Qu´ebec-Bavaria International Collaboration on Climate Change) the relative contributions to the overall uncertainty from the whole model chain (from global climate 10 models to water management models) are investigated using an ensemble of multiple climate and hydrological models. Although there are many options to downscale global climate projections to the regional scale, recent impact studies tend to use Regional Climate Models (RCMs). One reason for that is that the physical coherence between atmospheric and land-surface 15 variables is preserved. The coherence between temperature and precipitation is of particular interest in hydrology. However, the regional climate model outputs often are biased compared to the observed climatology of a given region. Therefore, biases in those outputs are often corrected to reproduce historic runoff conditions from hydrological models using them, even if those corrections alter the relationship between temperature and precipitation. So, as bias correction may affect the consistency between RCM output variables, the use of correction techniques and even the use of (biased) climate model data itself is sometimes disputed among scientists. For those reasons, the effect of bias correction on simulated runoff regimes and the relative change in selected runoff indicators is explored. If it affects the conclusion of climate change analysis in 25 hydrology, we should consider it as a source of uncertainty. If not, the application of bias correction methods is either unnecessary in hydro-climatic projections, or safe to use as it does not alter the change signal of river runoff. The results of the present paper highlight the analysis of daily runoff simulated with four different hydrological models in two natural-flow catchments, driven by different regional climate models for a reference and a future period. As expected, bias correction of climate model outputs is important for the reproduction of the runoff regime of the 5 past regardless of the hydrological model used. Then again, its impact on the relative change of flow indicators between reference and future period is weak for most indicators with the exception of the timing of the spring flood peak. Still, our results indicate that the impact of bias correction on runoff indicators increases with bias in the climate simulations

    DYNAMICS OF SELECTED TOWER DIVE TAKE-OFFS

    Get PDF
    The mechanics of platform diving, unlike those of springboard diving. have not been investigated to any great degree. Unlike the springboard, the platform provides no elastic energy to enhance the diver's momentum. At take-off the diver must achieve sufficient linear momentum to ensure the necessary height and distance to travel safely away from the platform and sufficient angular momentum to complete the required number of rotations about the transverse axis. Ground reaction forces (GRF) developed during contact with the diving platform and the body position of the diver at take-off define the magnitude and direction of the diver's momentum. The nature of rotations in springboard diving has been reported by many researchers and coaches (Fairbanks, 1963; Batterman, 1968; Stroup and Bushnell, 1969)...-tn most cases, it was felt that body Jean at take-off determined the number of rotations in the dive. Golden (1984) found that body lean at take-off increases according to the number of rotations being performed. Miller (1984) found that the height obtained in springboard diving was predominantly due to the action of the lower extremities as they accelera ted the trunk upwards. Although a number of investigators have studied springboard diving, there is an apparent Jack of information pertaining to platform diving. Furthermore, it seemes necessary to study the nature of increased rotations in platform diving. The purpose of this study was, therefore, to investigate the kinetics and kinematics of platform dive take-offs in which a rotation or multiple rotations occurred

    Non equilibrium inertial dynamics of colloidal systems

    Full text link
    We consider the properties of a one dimensional fluid of brownian inertial hard-core particles, whose microscopic dynamics is partially damped by a heat-bath. Direct interactions among the particles are represented as binary, instantaneous elastic collisions. Collisions with the heath bath are accounted for by a Fokker-Planck collision operator, whereas direct collisions among the particles are treated by a well known method of kinetic theory, the Revised Enskog Theory. By means of a time multiple time-scale method we derive the evolution equation for the average density. Remarkably, for large values of the friction parameter and/or of the mass of the particles we obtain the same equation as the one derived within the dynamic density functional theory (DDF). In addition, at moderate values of the friction constant, the present method allows to study the inertial effects not accounted for by DDF method. Finally, a numerical test of these corrections is provided.Comment: 13 pages+ 3 Postscript figure

    Strength and Stability Analysis of Rehabilitated Anterior Cruciate Ligament Individuals

    Get PDF
    International Journal of Exercise Science 11(1): 817-826, 2018.The anterior cruciate ligament (ACL) serves as a vital stabilizer for the human knee, yet it is one of the most injured ligaments in the body. Function of the knee is restored through reconstruction and physical therapy, but long term functional deficits persist in some individuals. To better understand the influence of post rehabilitation outcomes on dynamic balance performance, this study evaluated bilateral differences in strength and stability in 11 participants who have rehabilitated from an ACL reconstruction or repair. The Y-Balance Test and an isokinetic strength assessment using the Biodex dynamometer were used to measure dynamic knee stability and strength, respectively. No significant differences were found in the strength test measurements. However, side to side differences in Y-Balance Test composite score (-2.8±3.1%, p = 0.014), maximal anterior reach (-2.8±2.4 cm, p = 0.01), and posterolateral reach (-2.75±3.5 cm, p = 0.02) were found to be significantly impaired in participants’ involved limbs compared to the uninvolved limbs

    Diversity, competition, extinction: the ecophysics of language change

    Get PDF
    As early indicated by Charles Darwin, languages behave and change very much like living species. They display high diversity, differentiate in space and time, emerge and disappear. A large body of literature has explored the role of information exchanges and communicative constraints in groups of agents under selective scenarios. These models have been very helpful in providing a rationale on how complex forms of communication emerge under evolutionary pressures. However, other patterns of large-scale organization can be described using mathematical methods ignoring communicative traits. These approaches consider shorter time scales and have been developed by exploiting both theoretical ecology and statistical physics methods. The models are reviewed here and include extinction, invasion, origination, spatial organization, coexistence and diversity as key concepts and are very simple in their defining rules. Such simplicity is used in order to catch the most fundamental laws of organization and those universal ingredients responsible for qualitative traits. The similarities between observed and predicted patterns indicate that an ecological theory of language is emerging, supporting (on a quantitative basis) its ecological nature, although key differences are also present. Here we critically review some recent advances lying and outline their implications and limitations as well as open problems for future research.Comment: 17 Pages. A review on current models from statistical Physics and Theoretical Ecology applied to study language dynamic

    Free Meixner states

    Full text link
    Free Meixner states are a class of functionals on non-commutative polynomials introduced in math.CO/0410482. They are characterized by a resolvent-type form for the generating function of their orthogonal polynomials, by a recursion relation for those polynomials, or by a second-order non-commutative differential equation satisfied by their free cumulant functional. In this paper, we construct an operator model for free Meixner states. By combinatorial methods, we also derive an operator model for their free cumulant functionals. This, in turn, allows us to construct a number of examples. Many of these examples are shown to be trivial, in the sense of being free products of functionals which depend on only a single variable, or rotations of such free products. On the other hand, the multinomial distribution is a free Meixner state and is not a product. Neither is a large class of tracial free Meixner states which are analogous to the simple quadratic exponential families in statistics.Comment: 30 page

    Prediction of Response to Temozolomide in Low-Grade Glioma Patients Based on Tumor Size Dynamics and Genetic Characteristics

    Get PDF
    International audienceBoth molecular profiling of tumors and longitudinal tumor size data modeling are relevant strategies to predict cancer patients' response to treatment. Herein we propose a model of tumor growth inhibition integrating a tumor's genetic characteristics (p53 mutation and 1p/19q codeletion) that successfully describes the time course of tumor size in patients with low-grade gliomas treated with first-line temozolomide chemotherapy. The model captures potential tumor progression under chemotherapy by accounting for the emergence of tissue resistance to treatment following prolonged exposure to temozolomide. Using information on individual tumors' genetic characteristics, in addition to early tumor size measurements, the model was able to predict the duration and magnitude of response, especially in those patients in whom repeated assessment of tumor response was obtained during the first 3 months of treatment. Combining longitudinal tumor size quantitative modeling with a tumor''s genetic characterization appears as a promising strategy to personalize treatments in patients with low-grade gliomas. WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC? þ First-line temozolomide is frequently used to treat low-grade gliomas (LGG), which are slow-growing brain tumors. The duration of response depends on genetic characteristics such as 1p/19q chromosomal codeletion, p53 mutation, and IDH mutations. However, up to now there are no means of predicting, at the individual level, the duration of the response to TMZ and its potential benefit for a given patient. • WHAT QUESTION DID THIS STUDY ADDRESS? þ The present study assessed whether combining longitudinal tumor size quantitative modeling with a tumor's genetic characterization could be an effective means of predicting the response to temozolomide at the individual level in LGG patients. • WHAT THIS STUDY ADDS TO OUR KNOWLEDGE þ For the first time, we developed a model of tumor growth inhibition integrating a tumor's genetic characteristics which successfully describes the time course of tumor size and captures potential tumor progression under chemotherapy in LGG patients treated with first-line temozolomide. The present study shows that using information on individual tumors' genetic characteristics, in addition to early tumor size measurements, it is possible to predict the duration and magnitude of response to temozolomide. • HOW THIS MIGHT CHANGE CLINICAL PHARMACOLOGY AND THERAPEUTICS þ Our model constitutes a rational tool to identify patients most likely to benefit from temozolomide and to optimize in these patients the duration of temozolomide therapy in order to ensure the longest duration of response to treatment. Response evaluation criteria such as RECIST—or RANO for brain tumors—are commonly used to assess response to anticancer treatments in clinical trials. 1,2 They assign a patient's response to one of four categories, ranging from " complete response " to " disease progression. " Yet, criticisms have been raised regarding the use of such categorical criteria in the drug development process, 3,4 and regulatory agencies have promoted the additional analysis of longitudinal tumor size measurements through the use of quantitative modeling. 5 Several mathematical models of tumor growth and response to treatment have been developed for this purpose. 6,7 These analyses have led to th
    • …
    corecore