61 research outputs found

    Characterizing SL2S galaxy groups using the Einstein radius

    Full text link
    We analyzed the Einstein radius, θE\theta_E, in our sample of SL2S galaxy groups, and compared it with RAR_A (the distance from the arcs to the center of the lens), using three different approaches: 1.- the velocity dispersion obtained from weak lensing assuming a Singular Isothermal Sphere profile (θE,I\theta_{E,I}), 2.- a strong lensing analytical method (θE,II\theta_{E,II}) combined with a velocity dispersion-concentration relation derived from numerical simulations designed to mimic our group sample, 3.- strong lensing modeling (θE,III\theta_{E,III}) of eleven groups (with four new models presented in this work) using HST and CFHT images. Finally, RAR_A was analyzed as a function of redshift zz to investigate possible correlations with L, N, and the richness-to-luminosity ratio (N/L). We found a correlation between θE\theta_{E} and RAR_A, but with large scatter. We estimate θE,I\theta_{E,I} = (2.2 ±\pm 0.9) + (0.7 ±\pm 0.2)RAR_A, θE,II\theta_{E,II} = (0.4 ±\pm 1.5) + (1.1 ±\pm 0.4)RAR_A, and θE,III\theta_{E,III} = (0.4 ±\pm 1.5) + (0.9 ±\pm 0.3)RAR_A for each method respectively. We found a weak evidence of anti-correlation between RAR_A and zz, with LogRAR_A = (0.58±\pm0.06) - (0.04±\pm0.1)zz, suggesting a possible evolution of the Einstein radius with zz, as reported previously by other authors. Our results also show that RAR_A is correlated with L and N (more luminous and richer groups have greater RAR_A), and a possible correlation between RAR_A and the N/L ratio. Our analysis indicates that RAR_A is correlated with θE\theta_E in our sample, making RAR_A useful to characterize properties like L and N (and possible N/L) in galaxy groups. Additionally, we present evidence suggesting that the Einstein radius evolves with zz.Comment: Accepted for publication in Astronomy & Astrophysics. Typos correcte

    Dark matter-baryons separation at the lowest mass scale: the Bullet Group

    Full text link
    We report on the X-ray observation of a strong lensing selected group, SL2S J08544-0121, with a total mass of 2.4±0.6×10142.4 \pm 0.6 \times 10^{14} M\rm{M_\odot} which revealed a separation of 124±20124\pm20 kpc between the X-ray emitting collisional gas and the collisionless galaxies and dark matter (DM), traced by strong lensing. This source allows to put an order of magnitude estimate to the upper limit to the interaction cross section of DM of 10 cm2^2 g1^{-1}. It is the lowest mass object found to date showing a DM-baryons separation and it reveals that the detection of bullet-like objects is not rare and confined to mergers of massive objects opening the possibility of a statistical detection of DM-baryons separation with future surveys.Comment: 5 pages, 3 figures. Accepted for publication in MNRAS Letters. Typos correcte

    CLASH-VLT: The mass, velocity-anisotropy, and pseudo-phase-space density profiles of the z

    Full text link

    Low-temperature magnetic ordering and structural distortions in vanadium sesquioxide V2O3

    No full text
    Vanadium sesquioxide (V2O3) is an antiferromagnetic insulator below T-N approximate to 155 K. The magnetic order does not consist of only antiferromagnetic nearest-neighbor bonds, possibly excluding the interplane vanadium pairs, as one would infer from the bipartite character of the hexagonal basal plane in the high-temperature corundum structure. In fact, a magnetic structure with one ferromagnetic bond and two antiferromagnetic ones in the honeycomb plane is known experimentally to be realized, accompanied by a monoclinic distortion that makes the ferromagnetic bond inequivalent from the other two. We show here that the magnetic ordering, the accompanying monoclinic structural distortion, the magnetic anisotropy, and also the recently discovered high-pressure nonmagnetic monoclinic phase, can all be accurately described by conventional electronic structure calculations within GGA and GGA+U. Remarkably, our calculations yield that the corundum phase would be unstable to a monoclinic distortion even without magnetic ordering, thus suggesting that magnetism and lattice distortion are independent phenomena, though they reinforce each other. By means of GGA+U, we find a metal-to-insulator transition at a critical U-c. Bothmetal at U <= U-c and insulator above U-c have the same magnetic order as that actually observed below T-N, but different monoclinic distortions. Reassuringly, the distortion on the insulating side agrees with the experimental one. Our results are in line with DMFT calculations for the paramagnetic phase [A. I. Poteryaev et al., Phys. Rev. B 76, 085127 (2007)], which predict that the insulating character is driven by a correlation-enhanced crystal-field splitting between e(g)(pi) and a(1g) orbitals that pushes the latter above the chemical potential. We find that the a(1g) orbital, although almost empty in the insulating phase, is actually responsible for the unusual magnetic order as it leads to magnetic frustration whose effect is similar to a next-nearest-neighbor exchange in a Heisenberg model on a honeycomb lattice
    corecore