341 research outputs found

    PT-symmetric deformations of integrable models

    Get PDF
    We review recent results on new physical models constructed as PT-symmetrical deformations or extensions of different types of integrable models. We present non-Hermitian versions of quantum spin chains, multi-particle systems of Calogero-Moser-Sutherland type and non-linear integrable field equations of Korteweg-de-Vries type. The quantum spin chain discussed is related to the first example in the series of the non-unitary models of minimal conformal field theories. For the Calogero-Moser-Sutherland models we provide three alternative deformations: A complex extension for models related to all types of Coxeter/Weyl groups; models describing the evolution of poles in constrained real valued field equations of non linear integrable systems and genuine deformations based on antilinearly invariant deformed root systems. Deformations of complex nonlinear integrable field equations of KdV-type are studied with regard to different kinds of PT-symmetrical scenarios. A reduction to simple complex quantum mechanical models currently under discussion is presented.Comment: 21 pages, 3 figure

    Weak values of electron spin in a double quantum dot

    Full text link
    We propose a protocol for a controlled experiment to measure a weak value of the electron's spin in a solid state device. The weak value is obtained by a two step procedure -- weak measurement followed by a strong one (post-selection), where the outcome of the first measurement is kept provided a second post-selected outcome occurs. The set-up consists of a double quantum dot and a weakly coupled quantum point contact to be used as a detector. Anomalously large values of the spin of a two electron system are predicted, as well as negative values of the total spin. We also show how to incorporate the adverse effect of decoherence into this procedure.Comment: 4+ pages, 3 figures, final published versio

    Tomography of many-body weak values: Mach-Zehnder interferometry

    Get PDF
    We propose and study a weak value (WV) protocol in the context of a solid state setup, specifically, an electronic Mach-Zehnder interferometer. This is the first specific proposal to measure both the real and imaginary part (i.e., complete tomography) of a WV. We also analyze the manifestation of many-body physics in the WV to be measured, including finite temperature and shot-noise-like contributions.Comment: 4+ pages, 2 figure

    Non-gaussianities and the Stimulated creation of quanta in the inflationary universe

    Full text link
    Cosmological inflation generates a spectrum of density perturbations that can seed the cosmic structures we observe today. These perturbations are usually computed as the result of the gravitationally-induced spontaneous creation of perturbations from an initial vacuum state. In this paper, we compute the perturbations arising from gravitationally-induced stimulated creation when perturbations are already present in the initial state. The effect of these initial perturbations is not diluted by inflation and survives to its end, and beyond. We consider a generic statistical density operator ρ\rho describing an initial mixed state that includes probabilities for nonzero numbers of scalar perturbations to be present at early times during inflation. We analyze the primordial bispectrum for general configurations of the three different momentum vectors in its arguments. We find that the initial presence of quanta can significantly enhance non-gaussianities in the so-called squeezed limit. Our results show that an observation of non-gaussianities in the squeezed limit can occur for single-field inflation when the state in the very early inflationary universe is not the vacuum, but instead contains early-time perturbations. Valuable information about the initial state can then be obtained from observations of those non-gaussianities.Comment: 25 page

    Anyons in 1+1 Dimensions

    Full text link
    The possibility of excitations with fractional spin and statististics in 1+11+1 dimensions is explored. The configuration space of a two-particle system is the half-line. This makes the Hamiltonian self-adjoint for a family of boundary conditions parametrized by one real number γ\gamma. The limit γ0,(\gamma \rightarrow 0, (\infty) reproduces the propagator of non-relativistic particles whose wavefunctions are even (odd) under particle exchange. A relativistic ansatz is also proposed which reproduces the correct Polyakov spin factor for the spinning particle in 1+11+1 dimensions. These checks support validity of the interpretation of γ\gamma as a parameter related to the ``spin'' that interpolates continuously between bosons (γ=0\gamma =0) and fermions (γ=\gamma =\infty). Our approach can thus be useful for obtaining the propagator for one-dimensional anyons.Comment: 13p. latex (Revtex), no figures

    Mixed-state twin observables

    Get PDF
    Twin observables, i.e. opposite subsystem observables A+ and A- that are indistinguishable in measurement in a given mixed or pure state W, are investigated in detail algebraicly and geometrically. It is shown that there is a far-reaching correspondence between the detectable (in W) spectral entities of the two operators. Twin observables are state-dependently quantum-logically equivalent, and direct subsystem measurement of one of them ipso facto gives rise to the indirect (i.e. distant) measurement of the other. Existence of nontrivial twins requires singularity of W. Systems in thermodynamic equilibrium do not admit subsystem twins. These observables may enable one to simplify the matrix representing W.Comment: 13 page

    A spin chain model with non-Hermitian interaction: the Ising quantum spin chain in an imaginary field

    Get PDF
    We investigate a lattice version of the Yang-Lee model which is characterized by a non-Hermitian quantum spin chain Hamiltonian. We propose a new way to implement PT-symmetry on the lattice, which serves to guarantee the reality of the spectrum in certain regions of values of the coupling constants. In that region of unbroken PT-symmetry we construct a Dyson map, a metric operator and find the Hermitian counterpart of the Hamiltonian for small values of the number of sites, both exactly and perturbatively. Besides the standard perturbation theory about the Hermitian part of the Hamiltonian, we also carry out an expansion in the second coupling constant of the model. Our constructions turns out to be unique with the sole assumption that the Dyson map is Hermitian. Finally we compute the magnetization of the chain in the z and x direction

    Quantum state discrimination: a geometric approach

    Full text link
    We analyse the problem of finding sets of quantum states that can be deterministically discriminated. From a geometric point of view this problem is equivalent to that of embedding a simplex of points whose distances are maximal with respect to the Bures distance (or trace distance). We derive upper and lower bounds for the trace distance and for the fidelity between two quantum states, which imply bounds for the Bures distance between the unitary orbits of both states. We thus show that when analysing minimal and maximal distances between states of fixed spectra it is sufficient to consider diagonal states only. Hence considering optimal discrimination, given freedom up to unitary orbits, it is sufficient to consider diagonal states. This is illustrated geometrically in terms of Weyl chambers.Comment: 12 pages, 2 figure

    Enhanced local-type inflationary trispectrum from a non-vacuum initial state

    Get PDF
    We compute the primordial trispectrum for curvature perturbations produced during cosmic inflation in models with standard kinetic terms, when the initial quantum state is not necessarily the vacuum state. The presence of initial perturbations enhances the trispectrum amplitude for configuration in which one of the momenta, say k3k_3, is much smaller than the others, k3k1,2,4k_3 \ll k_{1,2,4}. For those squeezed configurations the trispectrum acquires the so-called local form, with a scale dependent amplitude that can get values of order ϵ(k1/k3)2 \epsilon ({k_1}/{k_3})^2. This amplitude can be larger than the prediction of the so-called Maldacena consistency relation by a factor 10610^6, and can reach the sensitivity of forthcoming observations, even for single-field inflationary models.Comment: 11 pages, 1 figure. References added, typos corrected, minor change

    Generalised Player Modelling : Why Artificial Intelligence in Games Should Incorporate Meaning, with a Formalism for so Doing

    Get PDF
    General game-playing artificial intelligence (AI) has recently seen important advances due to the various techniques known as ‘deep learning’. However, in terms of human-computer interaction, the advances conceal a major limitation: these algorithms do not incorporate any sense of what human players find meaningful in games. I argue that adaptive game AI will be enhanced by a generalised player model, because games are inherently human artefacts which require some encoding of the human perspective in order to respond naturally to individual players. The player model provides constraints on the adaptive AI, which allow it to encode aspects of what human players find meaningful. I propose that a general player model requires parameters for the subjective experience of play, including: player psychology, game structure, and actions of play. I argue that such a player model would enhance efficiency of per-game solutions, and also support study of game-playing by allowing (within-player) comparison between games, or (within-game) comparison between players (human and AI). Here we detail requirements for functional adaptive AI, arguing from first-principles drawn from games research literature, and propose a formal specification for a generalised player model based on our ‘Behavlets’ method for psychologically-derived player modelling.Peer reviewe
    corecore