447 research outputs found

    Bidirectional switch of the valence associated with a hippocampal contextual memory engram

    Get PDF
    The valence of memories is malleable because of their intrinsic reconstructive property. This property of memory has been used clinically to treat maladaptive behaviours. However, the neuronal mechanisms and brain circuits that enable the switching of the valence of memories remain largely unknown. Here we investigated these mechanisms by applying the recently developed memory engram cell- manipulation technique. We labelled with channelrhodopsin-2 (ChR2) a population of cells in either the dorsal dentate gyrus (DG) of the hippocampus or the basolateral complex of the amygdala (BLA) that were specifically activated during contextual fear or reward conditioning. Both groups of fear-conditioned mice displayed aversive light-dependent responses in an optogenetic place avoidance test, whereas both DG- and BLA-labelled mice that underwent reward conditioning exhibited an appetitive response in an optogenetic place preference test. Next, in an attempt to reverse the valence of memory within a subject, mice whose DG or BLA engram had initially been labelled by contextual fear or reward conditioning were subjected to a second conditioning of the opposite valence while their original DG or BLA engram was reactivated by blue light. Subsequent optogenetic place avoidance and preference tests revealed that although the DG-engram group displayed a response indicating a switch of the memory valence, the BLA-engram group did not. This switch was also evident at the cellular level by a change in functional connectivity between DG engram-bearing cells and BLA engram-bearing cells. Thus, we found that in the DG, the neurons carrying the memory engram of a given neutral context have plasticity such that the valence of a conditioned response evoked by their reactivation can be reversed by re-associating this contextual memory engram with a new unconditioned stimulus of an opposite valence. Our present work provides new insight into the functional neural circuits underlying the malleability of emotional memory.RIKEN Brain Science InstituteHoward Hughes Medical InstituteJPB FoundationNational Institutes of Health (U.S.) (Pre-doctoral Training Grant T32GM007287

    Fantastic voyage: the journey of intestinal microbiota-derived microvesicles through the body

    Get PDF
    As part of their life cycle, Gram-negative bacteria produce and release microvesicles (outer membrane vesicles, OMVs) consisting of spherical protrusions of the outer membrane that encapsulate periplasmic contents. OMVs produced by commensal bacteria in the gastrointestinal (GI) tract of animals are dispersed within the gut lumen with their cargo and enzymes being distributed across and throughout the GI tract. Their ultimate destination and fate is unclear although they can interact with and cross the intestinal epithelium using different entry pathways and access underlying immune cells in the lamina propria. OMVs have also been found in the bloodstream from which they can access various tissues and possibly the brain. The nanosize and non-replicative status of OMVs together with their resistance to enzyme degradation and low pH, alongside their ability to interact with the host, make them ideal candidates for delivering biologics to mucosal sites, such as the GI and the respiratory tract. In this mini-review, we discuss the fate of OMVs produced in the GI tract of animals with a focus on vesicles released by Bacteroides species and the use of OMVs as vaccine delivery vehicles and other potential applications

    Travel Tales of a Worldwide Weed: Genomic Signatures of Plantago major L. Reveal Distinct Genotypic Groups With Links to Colonial Trade Routes

    Get PDF
    Retracing pathways of historical species introductions is fundamental to understanding the factors involved in the successful colonization and spread, centuries after a species’ establishment in an introduced range. Numerous plants have been introduced to regions outside their native ranges both intentionally and accidentally by European voyagers and early colonists making transoceanic journeys; however, records are scarce to document this. We use genotyping-by-sequencing and genotype-likelihood methods on the selfing, global weed, Plantago major, collected from 50 populations worldwide to investigate how patterns of genomic diversity are distributed among populations of this global weed. Although genomic differentiation among populations is found to be low, we identify six unique genotype groups showing very little sign of admixture and low degree of outcrossing among them. We show that genotype groups are latitudinally restricted, and that more than one successful genotype colonized and spread into the introduced ranges. With the exception of New Zealand, only one genotype group is present in the Southern Hemisphere. Three of the most prevalent genotypes present in the native Eurasian range gave rise to introduced populations in the Americas, Africa, Australia, and New Zealand, which could lend support to the hypothesis that P. major was unknowlingly dispersed by early European colonists. Dispersal of multiple successful genotypes is a likely reason for success. Genomic signatures and phylogeographic methods can provide new perspectives on the drivers behind the historic introductions and the successful colonization of introduced species, contributing to our understanding of the role of genomic variation for successful establishment of introduced taxa.publishedVersio

    Travel Tales of a Worldwide Weed: Genomic Signatures of Plantago major L. Reveal Distinct Genotypic Groups With Links to Colonial Trade Routes

    Get PDF
    Retracing pathways of historical species introductions is fundamental to understanding the factors involved in the successful colonization and spread, centuries after a species’ establishment in an introduced range. Numerous plants have been introduced to regions outside their native ranges both intentionally and accidentally by European voyagers and early colonists making transoceanic journeys; however, records are scarce to document this. We use genotyping-by-sequencing and genotype-likelihood methods on the selfing, global weed, Plantago major, collected from 50 populations worldwide to investigate how patterns of genomic diversity are distributed among populations of this global weed. Although genomic differentiation among populations is found to be low, we identify six unique genotype groups showing very little sign of admixture and low degree of outcrossing among them. We show that genotype groups are latitudinally restricted, and that more than one successful genotype colonized and spread into the introduced ranges. With the exception of New Zealand, only one genotype group is present in the Southern Hemisphere. Three of the most prevalent genotypes present in the native Eurasian range gave rise to introduced populations in the Americas, Africa, Australia, and New Zealand, which could lend support to the hypothesis that P. major was unknowlingly dispersed by early European colonists. Dispersal of multiple successful genotypes is a likely reason for success. Genomic signatures and phylogeographic methods can provide new perspectives on the drivers behind the historic introductions and the successful colonization of introduced species, contributing to our understanding of the role of genomic variation for successful establishment of introduced taxa.info:eu-repo/semantics/publishedVersio

    Genetic or pharmaceutical blockade of phosphoinositide 3-kinase p110δ prevents chronic rejection of heart allografts.

    Get PDF
    Chronic rejection is the major cause of long-term heart allograft failure, characterized by tissue infiltration by recipient T cells with indirect allospecificity. Phosphoinositol-3-kinase p110δ is a key mediator of T cell receptor signaling, regulating both T cell activation and migration of primed T cells to non-lymphoid antigen-rich tissue. We investigated the effect of genetic or pharmacologic inactivation of PI3K p110δ on the development of chronic allograft rejection in a murine model in which HY-mismatched male hearts were transplanted into female recipients. We show that suppression of p110δ activity significantly attenuates the development of chronic rejection of heart grafts in the absence of any additional immunosuppressive treatment by impairing the localization of antigen-specific T cells to the grafts, while not inducing specific T cell tolerance. p110δ pharmacologic inactivation is effective when initiated after transplantation. Targeting p110δ activity might be a viable strategy for the treatment of heart chronic rejection in humans

    Defining Global Gene Expression Changes of the Hypothalamic-Pituitary-Gonadal Axis in Female sGnRH-Antisense Transgenic Common Carp (Cyprinus carpio)

    Get PDF
    BACKGROUND: The hypothalamic-pituitary-gonadal (HPG) axis is critical in the development and regulation of reproduction in fish. The inhibition of neuropeptide gonadotropin-releasing hormone (GnRH) expression may diminish or severely hamper gonadal development due to it being the key regulator of the axis, and then provide a model for the comprehensive study of the expression patterns of genes with respect to the fish reproductive system. METHODOLOGY/PRINCIPAL FINDINGS: In a previous study we injected 342 fertilized eggs from the common carp (Cyprinus carpio) with a gene construct that expressed antisense sGnRH. Four years later, we found a total of 38 transgenic fish with abnormal or missing gonads. From this group we selected the 12 sterile females with abnormal ovaries in which we combined suppression subtractive hybridization (SSH) and cDNA microarray analysis to define changes in gene expression of the HPG axis in the present study. As a result, nine, 28, and 212 genes were separately identified as being differentially expressed in hypothalamus, pituitary, and ovary, of which 87 genes were novel. The number of down- and up-regulated genes was five and four (hypothalamus), 16 and 12 (pituitary), 119 and 93 (ovary), respectively. Functional analyses showed that these genes involved in several biological processes, such as biosynthesis, organogenesis, metabolism pathways, immune systems, transport links, and apoptosis. Within these categories, significant genes for neuropeptides, gonadotropins, metabolic, oogenesis and inflammatory factors were identified. CONCLUSIONS/SIGNIFICANCE: This study indicated the progressive scaling-up effect of hypothalamic sGnRH antisense on the pituitary and ovary receptors of female carp and provided comprehensive data with respect to global changes in gene expression throughout the HPG signaling pathway, contributing towards improving our understanding of the molecular mechanisms and regulative pathways in the reproductive system of teleost fish

    Tobacco Upregulates P. gingivalis Fimbrial Proteins Which Induce TLR2 Hyposensitivity

    Get PDF
    Tobacco smokers are more susceptible to periodontitis than non-smokers but exhibit reduced signs of clinical inflammation. The underlying mechanisms are unknown. We have previously shown that cigarette smoke extract (CSE) represents an environmental stress to which P. gingivalis adapts by altering the expression of several virulence factors - including major and minor fimbrial antigens (FimA and Mfa1, respectively) and capsule - concomitant with a reduced pro-inflammatory potential of intact P. gingivalis.We hypothesized that CSE-regulation of capsule and fimbrial genes is reflected at the ultrastructural and functional levels, alters the nature of host-pathogen interactions, and contributes to the reduced pro- inflammatory potential of smoke exposed P. gingivalis. CSE induced ultrastructural alterations were determined by electron microscopy, confirmed by Western blot and physiological consequences studied in open-flow biofilms. Inflammatory profiling of specific CSE-dysregulated proteins, rFimA and rMfa1, was determined by quantifying cytokine induction in primary human innate and OBA-9 cells. CSE up-regulates P. gingivalis FimA at the protein level, suppresses the production of capsular polysaccharides at the ultrastructural level, and creates conditions that promote biofilm formation. We further show that while FimA is recognized by TLR2/6, it has only minimal inflammatory activity in several cell types. Furthermore, FimA stimulation chronically abrogates the pro-inflammatory response to subsequent TLR2 stimulation by other TLR-2-specific agonists (Pam3CSK4, FSL, Mfa1) in an IkappaBalpha- and IRAK-1-dependent manner.These studies provide some of the first information to explain, mechanistically, how tobacco smoke changes the P. gingivalis phenotype in a manner likely to promote P. gingivalis colonization and infection while simultaneously reducing the host response to this major mucosal pathogen

    Cardiovascular disease and the role of oral bacteria

    Get PDF
    In terms of the pathogenesis of cardiovascular disease (CVD) the focus has traditionally been on dyslipidemia. Over the decades our understanding of the pathogenesis of CVD has increased, and infections, including those caused by oral bacteria, are more likely involved in CVD progression than previously thought. While many studies have now shown an association between periodontal disease and CVD, the mechanisms underpinning this relationship remain unclear. This review gives a brief overview of the host-bacterial interactions in periodontal disease and virulence factors of oral bacteria before discussing the proposed mechanisms by which oral bacterial may facilitate the progression of CVD
    corecore