145 research outputs found

    Domestication and Crop Physiology: Roots of Green-Revolution Wheat

    Get PDF
    Background and aimsMost plant scientists, in contrast to animal scientists, study only half the organism, namely above-ground stems, leaves, flowers and fruits, and neglect below-ground roots. Yet all acknowledge roots are important for anchorage, water and nutrient uptake, and presumably components of yield. This paper investigates the relationship between domestication, and the root systems of landraces, and the parents of early, mid- and late green-revolution bread wheat cultivars. It compares the root system of bread wheat and 'Veery'-type wheat containing the 1RS translocation from rye.MethodsWheat germplasm was grown in large pots in sand culture in replicated experiments. This allowed roots to be washed free to study root characters.Key resultsThe three bread wheat parents of early green-revolution wheats have root biomass less than two-thirds the mean of some landrace wheats. Crossing early green-revolution wheat to an F(2) of 'Norin 10' and 'Brevor', further reduced root biomass in mid-generation semi-dwarf and dwarf wheats. Later-generation semi-dwarf wheats show genetic variation for root biomass, but some exhibit further reduction in root size. This is so for some California and UK wheats. The wheat-rye translocation in 'Kavkaz' for the short arm of chromosome 1 (1RS) increased root biomass and branching in cultivars that contained it.ConclusionsRoot size of modern cultivars is small compared with that of landraces. Their root system may be too small for optimum uptake of water and nutrients and maximum grain yield. Optimum root size for grain yield has not been investigated in wheat or most crop plants. Use of 1RS and similar alien translocations may increase root biomass and grain yield significantly in irrigated and rain-fed conditions. Root characters may be integrated into components of yield analysis in wheat. Plant breeders may need to select directly for root characters

    Dosage effect of the short arm of chromosome 1 of rye on root morphology and anatomy in bread wheat

    Get PDF
    The spontaneous translocation of the short arm of chromosome 1 of rye (1RS) in bread wheat is associated with higher root biomass and grain yield. Recent studies have confirmed the presence of QTL for different root morphological traits on the 1RS arm in bread wheat. This study was conducted to address two questions in wheat root genetics. First, does the presence of the 1RS arm in bread wheat affect its root anatomy? Second, how does root morphology and anatomy of bread wheat respond to different dosages of 1RS? Near-isogenic plants with a different number (0 to 4 dosages) of 1RS translocations were studied for root morphology and anatomy. The F1 hybrid, with single doses of the 1RS and 1AS arms, showed heterosis for root and shoot biomass. In other genotypes, with 0, 2, or 4 doses of 1RS, root biomass was incremental with the increase in the dosage of 1RS in bread wheat. This study also provided evidence of the presence of gene(s) influencing root xylem vessel number, size, and distribution in bread wheat. It was found that root vasculature follows a specific developmental pattern along the length of the tap root and 1RS dosage tends to affect the transitions differentially in different positions. This study indicated that the inherent differences in root morphology and anatomy of different 1RS lines may be advantageous compared to normal bread wheat to survive under stress conditions

    Mapping translocation breakpoints using a wheat microarray

    Get PDF
    We report mapping of translocation breakpoints using a microarray. We used complex RNA to compare normal hexaploid wheat (17 000 Mb genome) to a ditelosomic stock missing the short arm of chromosome 1B (1BS) and wheat-rye translocations that replace portions of 1BS with rye 1RS. Transcripts detected by a probe set can come from all three Triticeae genomes in ABD hexaploid wheat, and sequences of homoeologous genes on 1AS, 1BS and 1DS often differ from each other. Absence or replacement of 1BS therefore must sometimes result in patterns within a probe set that deviate from hexaploid wheat. We termed these ‘high variance probe sets’ (HVPs) and examined the extent to which HVPs associated with 1BS aneuploidy are related to rice genes on syntenic rice chromosome 5 short arm (5S). We observed an enrichment of such probe sets to 15–20% of all HVPs, while 1BS represents ∼2% of the total genome. In total 257 HVPs constitute wheat 1BS markers. Two wheat-rye translocations subdivided 1BS HVPs into three groups, allocating translocation breakpoints to narrow intervals defined by rice 5S coordinates. This approach could be extended to the entire wheat genome or any organism with suitable aneuploid or translocation stocks

    Phenotyping pipeline reveals major seedling root growth QTL in hexaploid wheat

    Get PDF
    Seedling root traits of wheat (Triticum aestivum L.) have been shown to be important for efficient establishment and linked to mature plant traits such as height and yield. A root phenotyping pipeline, consisting of a germination paper-based screen combined with image segmentation and analysis software, was developed and used to characterize seedling traits in 94 doubled haploid progeny derived from a cross between the winter wheat cultivars Rialto and Savannah. Field experiments were conducted to measure mature plant height, grain yield, and nitrogen (N) uptake in three sites over 2 years. In total, 29 quantitative trait loci (QTLs) for seedling root traits were identified. Two QTLs for grain yield and N uptake co-localize with root QTLs on chromosomes 2B and 7D, respectively. Of the 29 root QTLs identified, 11 were found to co-localize on 6D, with four of these achieving highly significant logarithm of odds scores (>20). These results suggest the presence of a major-effect gene regulating seedling root vigour/growth on chromosome 6D

    Integrated genetic map and genetic analysis of a region associated with root traits on the short arm of rye chromosome 1 in bread wheat

    Get PDF
    A rye–wheat centric chromosome translocation 1RS.1BL has been widely used in wheat breeding programs around the world. Increased yield of translocation lines was probably a consequence of increased root biomass. In an effort to map loci-controlling root characteristics, homoeologous recombinants of 1RS with 1BS were used to generate a consensus genetic map comprised of 20 phenotypic and molecular markers, with an average spacing of 2.5 cM. Physically, all recombination events were located in the distal 40% of the arms. A total of 68 recombinants was used and recombination breakpoints were aligned and ordered over map intervals with all the markers, integrated together in a genetic map. This approach enabled dissection of genetic components of quantitative traits, such as root traits, present on 1S. To validate our hypothesis, phenotyping of 45-day-old wheat roots was performed in five lines including three recombinants representative of the entire short arm along with bread wheat parents ‘Pavon 76’ and Pavon 1RS.1BL. Individual root characteristics were ranked and the genotypic rank sums were subjected to Quade analysis to compare the overall rooting ability of the genotypes. It appears that the terminal 15% of the rye 1RS arm carries gene(s) for greater rooting ability in wheat

    Transgene × Environment Interactions in Genetically Modified Wheat

    Get PDF
    BACKGROUND: The introduction of transgenes into plants may cause unintended phenotypic effects which could have an impact on the plant itself and the environment. Little is published in the scientific literature about the interrelation of environmental factors and possible unintended effects in genetically modified (GM) plants. METHODS AND FINDINGS: We studied transgenic bread wheat Triticum aestivum lines expressing the wheat Pm3b gene against the fungus powdery mildew Blumeria graminis f.sp. tritici. Four independent offspring pairs, each consisting of a GM line and its corresponding non-GM control line, were grown under different soil nutrient conditions and with and without fungicide treatment in the glasshouse. Furthermore, we performed a field experiment with a similar design to validate our glasshouse results. The transgene increased the resistance to powdery mildew in all environments. However, GM plants reacted sensitive to fungicide spraying in the glasshouse. Without fungicide treatment, in the glasshouse GM lines had increased vegetative biomass and seed number and a twofold yield compared with control lines. In the field these results were reversed. Fertilization generally increased GM/control differences in the glasshouse but not in the field. Two of four GM lines showed up to 56% yield reduction and a 40-fold increase of infection with ergot disease Claviceps purpurea compared with their control lines in the field experiment; one GM line was very similar to its control. CONCLUSIONS: Our results demonstrate that, depending on the insertion event, a particular transgene can have large effects on the entire phenotype of a plant and that these effects can sometimes be reversed when plants are moved from the glasshouse to the field. However, it remains unclear which mechanisms underlie these effects and how they may affect concepts in molecular plant breeding and plant evolutionary ecology

    Dissection of QTL effects for root traits using a chromosome arm-specific mapping population in bread wheat

    Get PDF
    A high-resolution chromosome arm-specific mapping population was used in an attempt to locate/detect gene(s)/QTL for different root traits on the short arm of rye chromosome 1 (1RS) in bread wheat. This population consisted of induced homoeologous recombinants of 1RS with 1BS, each originating from a different crossover event and distinct from all other recombinants in the proportions of rye and wheat chromatin present. It provides a simple and powerful approach to detect even small QTL effects using fewer progeny. A promising empirical Bayes method was applied to estimate additive and epistatic effects for all possible marker pairs simultaneously in a single model. This method has an advantage for QTL analysis in minimizing the error variance and detecting interaction effects between loci with no main effect. A total of 15 QTL effects, 6 additive and 9 epistatic, were detected for different traits of root length and root weight in 1RS wheat. Epistatic interactions were further partitioned into inter-genomic (wheat and rye alleles) and intra-genomic (rye–rye or wheat–wheat alleles) interactions affecting various root traits. Four common regions were identified involving all the QTL for root traits. Two regions carried QTL for almost all the root traits and were responsible for all the epistatic interactions. Evidence for inter-genomic interactions is provided. Comparison of mean values supported the QTL detection

    Gene Flow in Genetically Modified Wheat

    Get PDF
    Understanding gene flow in genetically modified (GM) crops is critical to answering questions regarding risk-assessment and the coexistence of GM and non-GM crops. In two field experiments, we tested whether rates of cross-pollination differed between GM and non-GM lines of the predominantly self-pollinating wheat Triticum aestivum. In the first experiment, outcrossing was studied within the field by planting “phytometers” of one line into stands of another line. In the second experiment, outcrossing was studied over distances of 0.5–2.5 m from a central patch of pollen donors to adjacent patches of pollen recipients. Cross-pollination and outcrossing was detected when offspring of a pollen recipient without a particular transgene contained this transgene in heterozygous condition. The GM lines had been produced from the varieties Bobwhite or Frisal and contained Pm3b or chitinase/glucanase transgenes, respectively, in homozygous condition. These transgenes increase plant resistance against pathogenic fungi. Although the overall outcrossing rate in the first experiment was only 3.4%, Bobwhite GM lines containing the Pm3b transgene were six times more likely than non-GM control lines to produce outcrossed offspring. There was additional variation in outcrossing rate among the four GM-lines, presumably due to the different transgene insertion events. Among the pollen donors, the Frisal GM line expressing a chitinase transgene caused more outcrossing than the GM line expressing both a chitinase and a glucanase transgene. In the second experiment, outcrossing after cross-pollination declined from 0.7–0.03% over the test distances of 0.5–2.5 m. Our results suggest that pollen-mediated gene flow between GM and non-GM wheat might only be a concern if it occurs within fields, e.g. due to seed contamination. Methodologically our study demonstrates that outcrossing rates between transgenic and other lines within crops can be assessed using a phytometer approach and that gene-flow distances can be efficiently estimated with population-level PCR analyses

    Beyond faith: Biomolecular evidence for changing urban economies in multi‐faith medieval Portugal

    Get PDF
    During the Middle Ages, Portugal witnessed unprecedented socioeconomic and religious changes under transitioning religious political rule. The implications of changing ruling powers for urban food systems and individual diets in medieval Portugal is poorly understood. This study aimed to elucidate the dietary impact of the Islamic and Christian conquests.info:eu-repo/semantics/publishedVersio

    Meta-analysis of pharmacogenetic interactions in amyotrophic lateral sclerosis clinical trials

    Get PDF
    OBJECTIVE: To assess whether genetic subgroups in recent amyotrophic lateral sclerosis (ALS) trials responded to treatment with lithium carbonate, but that the treatment effect was lost in a large cohort of nonresponders. METHODS: Individual participant data were obtained from 3 randomized trials investigating the efficacy of lithium carbonate. We matched clinical data with data regarding the UNC13A and C9orf72 genotype. Our primary outcome was survival at 12 months. On an exploratory basis, we assessed whether the effect of lithium depended on the genotype. RESULTS: Clinical data were available for 518 of the 606 participants. Overall, treatment with lithium carbonate did not improve 12-month survival (hazard ratio [HR] 1.0, 95% confidence interval [CI] 0.7-1.4; p = 0.96). Both the UNC13A and C9orf72 genotype were independent predictors of survival (HR 2.4, 95% CI 1.3-4.3; p = 0.006 and HR 2.5, 95% CI 1.1-5.2; p = 0.032, respectively). The effect of lithium was different for UNC13A carriers (p = 0.027), but not for C9orf72 carriers (p = 0.22). The 12-month survival probability for UNC13A carriers treated with lithium carbonate improved from 40.1% (95% CI 23.2-69.1) to 69.7% (95% CI 50.4-96.3). CONCLUSIONS: This study incorporated genetic data into past ALS trials to determine treatment effects in a genetic post hoc analysis. Our results suggest that we should reorient our strategies toward finding treatments for ALS, start focusing on genotype-targeted treatments, and standardize genotyping in order to optimize randomization and analysis for future clinical trials
    corecore