2,276 research outputs found
Detection of Hemlock Woolly Adelgid (Hemiptera: Adelgidae) Infestations with Sticky Traps
We deployed sticky traps underneath the crown of eastern hemlock, Tsuga canadensis (L.) Carrière, to assess their sensitivity at detecting crawlers (1st instar nymphs) of the non-native hemlock woolly adelgid, Adelges tsugae Annand (Hemiptera: Adelgidae). We found these traps more sensitive at detecting infested trees with low densities of A. tsugae than branch-tip sampling with pole pruners. We observed two peaks of crawler abundance at all sites: these peaks likely represented the timing of the progrediens and sistens crawler stages of A. tsugae. Deployment of sticky traps in treated and high-risk stands may prove useful at detecting residual and new infestations, respectively
Passive phloem loading and long-distance transport in a synthetic tree-on-a-chip
Vascular plants rely on differences of osmotic pressure to export sugars from
regions of synthesis (mature leaves) to sugar sinks (roots, fruits). In this
process, known as M\"unch pressure flow, the loading of sugars from
photosynthetic cells to the export conduit (the phloem) is crucial, as it sets
the pressure head necessary to power long-distance transport. Whereas most
herbaceous plants use active mechanisms to increase phloem concentration above
that of the photosynthetic cells, in most tree species, for which transport
distances are largest, loading seems to occur via passive symplastic diffusion
from the mesophyll to the phloem. Here, we use a synthetic microfluidic model
of a passive loader to explore the nonlinear dynamics that arise during export
and determine the ability of passive loading to drive long-distance transport.
We first demonstrate that in our device, phloem concentration is set by the
balance between the resistances to diffusive loading from the source and
convective export through the phloem. Convection-limited export corresponds to
classical models of M\"unch transport, where phloem concentration is close to
that of the source; in contrast, diffusion-limited export leads to small phloem
concentrations and weak scaling of flow rates with the hydraulic resistance. We
then show that the effective regime of convection-limited export is predominant
in plants with large transport resistances and low xylem pressures. Moreover,
hydrostatic pressures developed in our synthetic passive loader can reach
botanically relevant values as high as 10 bars. We conclude that passive
loading is sufficient to drive long-distance transport in large plants, and
that trees are well suited to take full advantage of passive phloem loading
strategies
Saisonnalité du transport de carbone organique dissous dans le ruisseau de l'Hermine, un bassin versant de tête de réseau du Bouclier Canadien
Nous avons étudié la variabilité saisonnière de la relation entre les fluctuations des concentrations en carbone organique dissous (COD) dans le ruisseau de l'Hermine (Québec, Canada) et les changements du débit (Q). Un total de 93 événements hydrologiques échantillonnés de 1994 à 2003 et regroupés sur une base saisonnière (hiver-printemps, été, automne) a été analysé. Le modèle de régression linéaire est utilisé afin de déterminer, pour chaque événement, la pente de la relation entre la concentration en COD dans le ruisseau et le débit. Ces pentes sont regroupées par saison et selon un seuil arbitraire de un qui permet de contraster les conditions hydrologiques et climatiques initiales des événements répertoriés. Les résultats du test de Kruskal-Wallis, visant la comparaison entre les événements de pentes supérieures et inférieures à un, montrent clairement la saisonnalité de la relation entre le COD et le débit. La saisonnalité de la relation COD/Q est ensuite mise en relation avec des variables climatiques et hydrologiques susceptibles de conditionner le transport du COD dans le bassin de l'Hermine. Les résultats montrent que les changements saisonniers des conditions climatiques et hydrologiques dans le bassin versant ont un impact significatif sur la relation entre le COD et le débit. Ainsi, le volume de précipitation tombé durant l'événement, la température moyenne de l'air et la température du sol régissent significativement (p =0,041; 0,001 et 0,009 respectivement) le transport du COD pour la période hiver-printemps. Les basses températures du sol et l'apport élevé en eau via les précipitations et la fonte favorisent le lessivage intense du COD soluble déjà limité par les basses températures. Au cours de l'été, l'état initial d'humidité du bassin est le principal facteur contrôlant l'évolution des concentrations de COD lors d'une crue; les fortes relations avec le pourcentage d'humidité des sols et le débit total 24 h avant l'événement le prouvent (p =0,039 et 0,0003 respectivement). Les changements les plus prononcés du COD surviennent, au cours de l'été, suite à une période prolongée de sécheresse. À l'automne, le transport du COD est influencé par le volume de précipitation tombé durant l'événement (p =0,031) et la température du sol (p =0,042). La modélisation de la relation COD/Q par les variables hydro-climatiques montre que 40% de la relation COD/Q s'explique par la température du sol durant la période d'hiver-printemps. Durant l'été, les conditions initiales d'humidité du bassin, traduites par le débit 24 h avant l'événement, expliquent à 51% la relation COD/Q. À l'automne, la relation COD/Q est gouvernée à 50% à la fois par le volume de précipitation tombé durant l'événement et la température du sol. L'analyse de ces données établit clairement la saisonnalité de la relation COD/Q et que des variables climatiques et hydrologiques permettent de quantifier ces fluctuations saisonnières.The terrestrial organic carbon (C) pool, estimated to 1.5 x 1015 kg C for the first meter of soil (Amundson, 2001), represents a major terrestrial elemental stock for which the recycling rate and the response to perturbations are still unknown. Under the present changing climatic conditions, C fluxes in terrestrial ecosystems could be significantly disturbed during the next decades. Indeed, the multi-annual changes in temperature and precipitation are likely to have a major impact on the net primary production and on organic matter decomposition in soils. This situation influences the production of the dissolved organic carbon (DOC) in soils, its transport to surface waters and hence, water quality. In this context, a better knowledge of the climatic and hydrologic factors influencing seasonal variations in DOC export is crucial to improve our understanding of the potential transformation of carbon stocks and fluxes in terrestrial ecosystems.The objectives of the present study were 1) to evaluate the seasonality in the relationship between dissolved organic carbon (DOC) concentrations in the stream and streamflow (Q) and 2) to quantify the impact of seasonal changes in climatic and hydrological conditions in the watershed on the DOC/Q relationship.The Hermine catchment is located about 80 km north of Montréal, Québec, Canada. An intermittent first-order stream drains the 5.1 ha catchment. Soils are Orthic and Gleyed Humo-Ferric and Ferro-Humic Podzols. The stream water was sampled daily, from 1994 to 2003, with an automatic sampler. The stream discharge was calculated from the water level above a 90º V-notch weir using a Global level sensor bubbler. Soil organic C content was analysed by the modified Walkley-Black method. Because of the high cost of DOC analysis for numerous samples, the DOC content was estimated by the relationship obtained between eight stream water samples analysed with a Shimadzu TOC analyser (Shimadzu, Kyoto, Japan) and the corresponding absorbance measured at 254 nm. From the initial year of the project, 1994, the regression used was Y=-0.05 + 32.60 X with an r2 value of 0.58 and a precision of 0.05 mg·L-1.The relationship between the DOC concentration and Q at the Hermine was positive and significant (p < 0.01) when all data were considered (n=1960). Because of the weakness of this relation (r2 =0.12), the stream samples, from 1994 to 2003, were seasonally split into 93 distinct hydrological events: 33 for winter-spring, 34 for summer and 26 for fall. A linear regression model was used to determine, for each event, the slope of the relationship between the DOC concentrations in the stream and Q. To contrast the antecedent conditions of the Hermine watershed, the events from a given season were divided into two groups. The Kruskal-Wallis test was then used to establish the link between the slope of the DOC/Q relationships on the one hand, and the environmental watershed conditions on the other hand: the climatic variables (volume of precipitation during event, mean air and soil temperatures) and the hydrological variables (stream discharge 24 h before the event, soil moisture, and ground water level).The DOC concentrations in the stream varied on an annual, a seasonal and an event basis. For the period 1994 to 2003, the annual mean concentrations, calculated from daily samples, varied from 2.0 to 2.5 mg DOC·L-1. On a seasonal basis, mean daily DOC was higher during the summer and the fall (2.9 and 2.8 mg DOC·L-1 respectively), and lower in the winter-spring (2.1 mg DOC·L-1). The relation between DOC concentrations and Q fluctuated as a function of the seasonal evolution of climatic and hydrological conditions in the Hermine catchment. For winter-spring events, 79% of the events had a DOC/Q slope lower than one. This period was characterised by high streamflow levels and high total DOC fluxes even though the daily mean DOC concentrations were low (2.1 mg DOC·L-1). The volume of precipitation during the event (p =0.041), the mean air temperature (p =0.001) and the soil temperature (p =0.009) were significantly related to the difference between events with slopes lower and higher than one. Indeed the slope of the relation increases when soil temperatures are elevated. When the temperatures are higher, DOC export increases and subsurface flow in soil horizon is enriched in DOC. Under colder temperature, the DOC production is limited and the soluble organic substances stored in soils are leached out the catchment with the high volume of precipitation and with the water coming from the snowmelt. For the summer period, there were 20 events with slopes greater than one against 14 with slopes lower than one. The soil humidity (p =0.039) and the total streamflow 24 h before the event (p=0.0003), were the two variables that significantly distinguished both slope groups. Rapid changes in DOC concentration occur during hydrological events following a long drought period. Under dry conditions, the subsurface flow in soil horizons rich in organic matter, the re-hydration of bed sediments and the hydrophobic behaviour of soil particles can all contribute to the export of very high DOC concentrations, even during small events. The relationships between DOC and Q, for the fall season, were significantly influenced by the volume of precipitation during the event (p =0.031) and the mean soil temperature (p =0.042). The events with the lower slopes showed the highest volume of precipitation during event and the lowest soil temperature. For these events occurring under wet conditions, the water originates essentially from the B and C horizons, and DOC fluctuations are then limited because of the low concentrations of the DOC in these horizons (anionic sorption of soluble organic substances by iron oxides).Best-fit from multiple regressions indicated that 40% of the link between DOC and Q was explained by the soil temperature during the winter-spring period (p =0.0001). For summer, the streamflow 24 h before events accounted for 51% of the variation in DOC/Q relationships (p =0.00001). For the fall period, the volume of precipitation during event and the soil temperature both contributed equally to the DOC/Q relationships (p =0.001). From these results, obtained from a multi-year project, it is clear that the relation between DOC and Q is a function of the variability in the climatic and hydrological watershed conditions. In a context of global warming, it is possible that warmer air temperatures have an effect on soil temperature. Thus, during winter-spring and fall periods, the duration and the intensity of the DOC production in soils will increase and the export of DOC from the watershed to other surface water system could become more important under equivalent or higher streamflow. Higher air temperature also means higher evapotranspiration by the forest during the summer period, and consequently dryer watershed conditions. A low streamflow and a low soil humidity level could be expected and then, brief rain events will sporadically flush the soluble organic carbon accumulated in the soil. The DOC export would be insignificant for that period, but the DOC would reach the highest annual level. The new knowledge on the DOC/Q relationships, at the hydrological event scale, will be added to the accumulated data on the possible effects of global warming on the carbon cycle in forested ecosystems
Iron, oxidative stress, and virulence : roles of iron-sensitive transcription factor Sre1 and the redox sensor ChAp1 in the maize pathogen Cochliobolus heterostrophus.
The gene SRE1, encoding the GATA transcription factor siderophore biosynthesis repressor (Sre1), was identified in the genome of the maize pathogen Cochliobolus heterostrophus and deleted. Mutants were altered in sensitivity to iron, oxidative stress, and virulence to the host. To gain insight into mechanisms of this combined regulation, genetic interactions among SRE1 (the nonribosomal peptide synthetase encoding gene NPS6, which is responsible for extracellular siderophore biosynthesis) and ChAP1 (encoding a transcription factor regulating redox homeostasis) were studied. To identify members of the Sre1 regulon, expression of candidate iron and oxidative stress-related genes was assessed in wild-type (WT) and sre1 mutants using quantitative reverse-transcription polymerase chain reaction. In sre1 mutants, NPS6 and NPS2 genes, responsible for siderophore biosynthesis, were derepressed under iron replete conditions, whereas the high-affinity reductive iron uptake pathway associated gene, FTR1, was not, in contrast to outcomes with other well-studied fungal models. C. heterostrophus L-ornithine-N(5)- monooxygenase (SIDA2), ATP-binding cassette (ABC6), catalase (CAT1), and superoxide dismutase (SOD1) genes were also derepressed under iron-replete conditions in sre1 mutants. Chap1nps6 double mutants were more sensitive to oxidative stress than either Chap1 or nps6 single mutants, while Chap1sre1 double mutants showed a modest increase in resistance compared with single Chap1 mutants but were much more sensitive than sre1 mutants. These findings suggest that the NPS6 siderophore indirectly contributes to redox homeostasis via iron sequestration, while Sre1 misregulation may render cells more sensitive to oxidative stress. The double-mutant phenotypes are consistent with a model in which iron sequestration by NPS6 defends the pathogen against oxidative stress. C. heterostrophus sre1, nps6, Chap1, Chap1nps6, and Chap1sre1 mutants are all reduced in virulence toward the host, compared with the WT
Quantum mechanics/molecular mechanics modeling of drug metabolism:Mexiletine N-hydroxylation by cytochrome P450 1A2
The mechanism of cytochrome P450(CYP)-catalyzed
hydroxylation of
primary amines is currently unclear and is relevant to drug metabolism;
previous small model calculations have suggested two possible mechanisms:
direct N-oxidation and H-abstraction/rebound. We have modeled the
N-hydroxylation of (<i>R</i>)-mexiletine in CYP1A2 with
hybrid quantum mechanics/molecular mechanics (QM/MM) methods, providing
a more detailed and realistic model. Multiple reaction barriers have
been calculated at the QM(B3LYP-D)/MM(CHARMM27) level for the direct
N-oxidation and H-abstraction/rebound mechanisms. Our calculated barriers
indicate that the direct N-oxidation mechanism is preferred and proceeds
via the doublet spin state of Compound I. Molecular dynamics simulations
indicate that the presence of an ordered water molecule in the active
site assists in the binding of mexiletine in the active site, but
this is not a prerequisite for reaction via either mechanism. Several
active site residues play a role in the binding of mexiletine in the
active site, including Thr124 and Phe226. This work reveals key details
of the N-hydroxylation of mexiletine and further demonstrates that
mechanistic studies using QM/MM methods are useful for understanding
drug metabolism
Multiple Scale Reorganization of Electrostatic Complexes of PolyStyrene Sulfonate and Lysozyme
We report on a SANS investigation into the potential for these structural
reorganization of complexes composed of lysozyme and small PSS chains of
opposite charge if the physicochemical conditions of the solutions are changed
after their formation. Mixtures of solutions of lysozyme and PSS with high
matter content and with an introduced charge ratio [-]/[+]intro close to the
electrostatic stoichiometry, lead to suspensions that are macroscopically
stable. They are composed at local scale of dense globular primary complexes of
radius ~ 100 {\AA}; at a higher scale they are organized fractally with a
dimension 2.1. We first show that the dilution of the solution of complexes,
all other physicochemical parameters remaining constant, induces a macroscopic
destabilization of the solutions but does not modify the structure of the
complexes at submicronic scales. This suggests that the colloidal stability of
the complexes can be explained by the interlocking of the fractal aggregates in
a network at high concentration: dilution does not break the local aggregate
structure but it does destroy the network. We show, secondly, that the addition
of salt does not change the almost frozen inner structure of the cores of the
primary complexes, although it does encourage growth of the complexes; these
coalesce into larger complexes as salt has partially screened the electrostatic
repulsions between two primary complexes. These larger primary complexes remain
aggregated with a fractal dimension of 2.1. Thirdly, we show that the addition
of PSS chains up to [-]/[+]intro ~ 20, after the formation of the primary
complex with a [-]/[+]intro close to 1, only slightly changes the inner
structure of the primary complexes. Moreover, in contrast to the synthesis
achieved in the one-step mixing procedure where the proteins are unfolded for a
range of [-]/[+]intro, the native conformation of the proteins is preserved
inside the frozen core
Secondary contact and admixture between independently invading populations of the Western corn rootworm, diabrotica virgifera virgifera in Europe
The western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae), is one of the most destructive pests of corn in North America and is currently invading Europe. The two major invasive outbreaks of rootworm in Europe have occurred, in North-West Italy and in Central and South-Eastern Europe. These two outbreaks originated from independent introductions from North America. Secondary contact probably occurred in North Italy between these two outbreaks, in 2008. We used 13 microsatellite markers to conduct a population genetics study, to demonstrate that this geographic contact resulted in a zone of admixture in the Italian region of Veneto. We show that i) genetic variation is greater in the contact zone than in the parental outbreaks; ii) several signs of admixture were detected in some Venetian samples, in a Bayesian analysis of the population structure and in an approximate Bayesian computation analysis of historical scenarios and, finally, iii) allelic frequency clines were observed at microsatellite loci. The contact between the invasive outbreaks in North-West Italy and Central and South-Eastern Europe resulted in a zone of admixture, with particular characteristics. The evolutionary implications of the existence of a zone of admixture in Northern Italy and their possible impact on the invasion success of the western corn rootworm are discussed
101 Dothideomycetes genomes: A test case for predicting lifestyles and emergence of pathogens.
Dothideomycetes is the largest class of kingdom Fungi and comprises an incredible diversity of lifestyles, many of which have evolved multiple times. Plant pathogens represent a major ecological niche of the class Dothideomycetes and they are known to infect most major food crops and feedstocks for biomass and biofuel production. Studying the ecology and evolution of Dothideomycetes has significant implications for our fundamental understanding of fungal evolution, their adaptation to stress and host specificity, and practical implications with regard to the effects of climate change and on the food, feed, and livestock elements of the agro-economy. In this study, we present the first large-scale, whole-genome comparison of 101 Dothideomycetes introducing 55 newly sequenced species. The availability of whole-genome data produced a high-confidence phylogeny leading to reclassification of 25 organisms, provided a clearer picture of the relationships among the various families, and indicated that pathogenicity evolved multiple times within this class. We also identified gene family expansions and contractions across the Dothideomycetes phylogeny linked to ecological niches providing insights into genome evolution and adaptation across this group. Using machine-learning methods we classified fungi into lifestyle classes with >95 % accuracy and identified a small number of gene families that positively correlated with these distinctions. This can become a valuable tool for genome-based prediction of species lifestyle, especially for rarely seen and poorly studied species
Understanding the threats posed by non-native species: public vs. conservation managers.
Public perception is a key factor influencing current conservation policy. Therefore, it is important to determine the influence of the public, end-users and scientists on the prioritisation of conservation issues and the direct implications for policy makers. Here, we assessed public attitudes and the perception of conservation managers to five non-native species in the UK, with these supplemented by those of an ecosystem user, freshwater anglers. We found that threat perception was not influenced by the volume of scientific research or by the actual threats posed by the specific non-native species. Media interest also reflected public perception and vice versa. Anglers were most concerned with perceived threats to their recreational activities but their concerns did not correspond to the greatest demonstrated ecological threat. The perception of conservation managers was an amalgamation of public and angler opinions but was mismatched to quantified ecological risks of the species. As this suggests that invasive species management in the UK is vulnerable to a knowledge gap, researchers must consider the intrinsic characteristics of their study species to determine whether raising public perception will be effective. The case study of the topmouth gudgeon Pseudorasbora parva reveals that media pressure and political debate has greater capacity to ignite policy changes and impact studies on non-native species than scientific evidence alone
- …
