159 research outputs found

    Breakup Conditions of Projectile Spectators from Dynamical Observables

    Full text link
    Momenta and masses of heavy projectile fragments (Z >= 8), produced in collisions of 197Au with C, Al, Cu and Pb targets at E/A = 600 MeV, were determined with the ALADIN magnetic spectrometer at SIS. An analysis of kinematic correlations between the two and three heaviest projectile fragments in their rest frame was performed. The sensitivity of these correlations to the conditions at breakup was verified within the schematic SOS-model. The data were compared to calculations with statistical multifragmentation models and to classical three-body calculations. Classical trajectory calculations reproduce the dynamical observables. The deduced breakup parameters, however, differ considerably from those assumed in the statistical multifragmentation models which describe the charge correlations. If, on the other hand, the analysis of kinematic and charge correlations is performed for events with two and three heavy fragments produced by statistical multifragmentation codes, a good agreement with the data is found with the exception that the fluctuation widths of the intrinsic fragment energies are significantly underestimated. A new version of the multifragmentation code MCFRAG was therefore used to investigate the potential role of angular momentum at the breakup stage. If a mean angular momentum of 0.75\hbar/nucleon is added to the system, the energy fluctuations can be reproduced, but at the same time the charge partitions are modified and deviate from the data. PACS numbers: 25.70.Mn, 25.70.Pq, 25.75.Ld, 25.75.-qComment: 38 pages, RevTeX with 21 included figures; Also available from http://www-kp3.gsi.de/www/kp3/aladin_publications.htm

    Thermal and Chemical Freeze-out in Spectator Fragmentation

    Full text link
    Isotope temperatures from double ratios of hydrogen, helium, lithium, beryllium, and carbon isotopic yields, and excited-state temperatures from yield ratios of particle-unstable resonances in 4He, 5Li, and 8Be, were determined for spectator fragmentation, following collisions of 197Au with targets ranging from C to Au at incident energies of 600 and 1000 MeV per nucleon. A deviation of the isotopic from the excited-state temperatures is observed which coincides with the transition from residue formation to multi-fragment production, suggesting a chemical freeze-out prior to thermal freeze-out in bulk disintegrations.Comment: 14 pages, 10 figures, submitted to Phys. Rev. C, small changes as suggested by the editors and referee

    Role of transglutaminase 2 in PAC1 receptor mediated protection against hypoxia-induced cell death and neurite outgrowth in differentiating N2a neuroblastoma cells

    Get PDF
    The PAC1 receptor and tissue transglutaminase (TG2) play important roles in neurite outgrowth and modulation of neuronal cell survival. In this study, we investigated the regulation of TG2 activity by the PAC1 receptor in retinoic acid-induced differentiating N2a neuroblastoma cells. TG2 transamidase activity was determined using an amine incorporation and a peptide cross linking assay. In situ TG2 activity was assessed by visualising the incorporation of biotin-X-cadaverine using confocal microscopy. TG2 phosphorylation was monitored via immunoprecipitation and Western blotting. The role of TG2 in PAC1 receptor-induced cytoprotection and neurite outgrowth was investigated by monitoring hypoxia-induced cell death and appearance of axonal-like processes, respectively. The amine incorporation and protein crosslinking activity of TG2 increased in a time and concentration-dependent manner following stimulation with pituitary adenylate cyclase-activating polypeptide-27 (PACAP-27). PACAP-27 mediated increases in TG2 activity were abolished by the TG2 inhibitors Z-DON and R283 and by pharmacological inhibition of protein kinase A (KT 5720 and Rp-cAMPs), protein kinase C (Ro 31-8220), MEK1/2 (PD 98059), and removal of extracellular Ca2+. Fluorescence microscopy demonstrated PACAP-27 induced in situ TG2 activity. TG2 inhibition blocked PACAP-27 induced attenuation of hypoxia-induced cell death and outgrowth of axon-like processes. TG2 activation and cytoprotection were also observed in human SH-SY5Y cells. Together, these results demonstrate that TG2 activity was stimulated downstream of the PAC1 receptor via a multi protein kinase dependent pathway. Furthermore, PAC1 receptor-induced cytoprotection and neurite outgrowth are dependent upon TG2. These results highlight the importance of TG2 in the cellular functions of the PAC1 receptor

    Identification and Quantification of Proteoforms by Mass Spectrometry

    Get PDF
    A proteoform is a defined form of a protein derived from a given gene with a specific amino acid sequence and localized post-translational modifications. In top-down proteomic analyses, proteoforms are identified and quantified through mass spectrometric analysis of intact proteins. Recent technological developments have enabled comprehensive proteoform analyses in complex samples, and an increasing number of laboratories are adopting top-down proteomic workflows. In this review, we outline some recent advances and discuss current challenges and future directions for the field

    Cytosolic Guanine Nucledotide Binding Deficient Form of Transglutaminase 2 (R580a) Potentiates Cell Death in Oxygen Glucose Deprivation

    Get PDF
    Transglutaminase 2 (TG2) is a hypoxia-responsive protein that is a calcium-activated transamidating enzyme, a GTPase and a scaffolding/linker protein. Upon activation TG2 undergoes a large conformational change, which likely affects not only its enzymatic activities but its non-catalytic functions as well. The focus of this study was on the role of transamidating activity, conformation and localization of TG2 in ischemic cell death. Cells expressing a GTP binding deficient form of TG2 (TG2-R580A) with high basal transamidation activity and a more extended conformation showed significantly increased cell death in response to oxygen-glucose deprivation; however, targeting TG2-R580A to the nucleus abrogated its detrimental role in oxygen-glucose deprivation. Treatment of cells expressing wild type TG2, TG2-C277S (a transamidating inactive mutant) and TG2-R580A with Cp4d, a reversible TG2 inhibitor, did not affect cell death in response to oxygen-glucose deprivation. These findings indicate that the pro-cell death effects of TG2 are dependent on its localization to the cytosol and independent of its transamidation activity. Further, the conformational state of TG2 is likely an important determinant in cell survival and the prominent function of TG2 in ischemic cell death is as a scaffold to modulate cellular processes

    Transglutaminase 6: a protein associated with central nervous system development and motor function.

    Get PDF
    Transglutaminases (TG) form a family of enzymes that catalyse various post-translational modifications of glutamine residues in proteins and peptides including intra- and intermolecular isopeptide bond formation, esterification and deamidation. We have characterized a novel member of the mammalian TG family, TG6, which is expressed in a human carcinoma cell line with neuronal characteristics and in mouse brain. Besides full-length protein, alternative splicing results in a short variant lacking the second β-barrel domain in man and a variant with truncated β-sandwich domain in mouse. Biochemical data show that TG6 is allosterically regulated by Ca(2+) and guanine nucleotides. Molecular modelling indicates that TG6 could have Ca(2+) and GDP-binding sites related to those of TG3 and TG2, respectively. Localization of mRNA and protein in the mouse identified abundant expression of TG6 in the central nervous system. Analysis of its temporal and spatial pattern of induction in mouse development indicates an association with neurogenesis. Neuronal expression of TG6 was confirmed by double-labelling of mouse forebrain cells with cell type-specific markers. Induction of differentiation in mouse Neuro 2a cells with NGF or dibutyryl cAMP is associated with an upregulation of TG6 expression. Familial ataxia has recently been linked to mutations in the TGM6 gene. Autoantibodies to TG6 were identified in immune-mediated ataxia in patients with gluten sensitivity. These findings suggest a critical role for TG6 in cortical and cerebellar neurons

    Leptin, resistin and visfatin: the missing link between endocrine metabolic disorders and immunity

    Get PDF
    corecore