101 research outputs found

    Spatial and temporal patterns of pore water chemistry in the inter-tidal zone of a high energy beach

    Get PDF
    Submarine groundwater discharge (SGD) is a ubiquitous source of meteoric fresh groundwater and recirculating seawater to the coastal ocean. Due to the hidden distribution of SGD, as well as the hydraulic- and stratigraphy-driven spatial and temporal heterogeneities, one of the biggest challenges to date is the correct assessment of SGD-driven constituent fluxes. Here, we present results from a 3-dimensional seasonal sampling campaign of a shallow subterranean estuary in a high-energy, meso-tidal beach, Spiekeroog Island, Northern Germany. We determined beach topography and analyzed physico-chemical and biogeochemical parameters such as salinity, temperature, dissolved oxygen, Fe(II) and dissolved organic matter fluorescence (FDOM). Overall, the highest gradients in pore water chemistry were found in the cross-shore direction. In particular, a strong physico-chemical differentiation between the tidal high water and low water line was found and reflected relatively stable in- and exfiltrating conditions in these areas. Contrastingly, in between, the pore water compositions in the existing foreshore ridge and runnel system were very heterogeneous on a spatial and temporal scale. The reasons for this observation may be the strong morphological changes that occur throughout the entire year, which affect the exact locations and heights of the ridge and runnel structures and associated flow paths. Further, seasonal changes in temperature and inland hydraulic head, and the associated effect on microbial mediated redox reactions likely overprint these patterns. In the long-shore direction the pore water chemistry varied less than the along the cross-shore direction. Variation in long-shore direction was probably occurring due to topography changes of the ridge-runnel structure and a physical heterogeneity of the sediment, which produced non-uniform groundwater flow conditions. We conclude that on meso-tidal high energy beaches, the rapidly changing beach morphology produces zones with different approximations to steady-state conditions. Therefore, we suggest that zone-specific endmember sampling is the optimal strategy to reduce uncertainties of SGD-driven constituent fluxes

    Evolution of the Southwest Australian Rifted Continental Margin During Breakup of East Gondwana: Results from IODP Expedition 369

    Get PDF
    International Ocean Discovery Program Expedition 369 drilled four sites on the southwestern Australian continental margin, in the deep water Mentelle Basin (MB) and on the neighboring Naturaliste Plateau (NP). The drillsites are located on continental crust that continued rifting after seafloor spreading began further north on the Perth Abyssal Plain (PAP) between magnetochrons M11r and M11n (133‐132 Ma), ending when spreading began west of the NP between chrons M5n and M3n (126‐124 Ma). Drilling recovered the first in‐situ samples of basalt flows overlying the breakup unconformity on the NP, establishing a magnetostratigraphically constrained eruption age of >131‐133 Ma and confirming a minimal late Valanginian age for the breakup unconformity (coeval with the onset of PAP seafloor spreading). Petrogenetic modeling indicates the basalts were generated by 25% melting at 1.5 GPa and a potential temperature of 1380‐1410 °C, consistent with proximity of the Kerguelen plume during breakup. Benthic foraminiferal fossils indicate that the NP remained at upper bathyal or shallower depths during the last 6 Myr of rifting and for 3‐5 Myr after breakup between India and Australia. The limited subsidence is attributed to heat from the nearby Kerguelen plume and PAP spreading ridge. The margin subsided to middle bathyal depths by Albian time and to lower bathyal (NP) or greater (MB) depths by late Paleogene time. Periods of rapid sedimentation accompanied a westward jump of the PAP spreading ridge (108 Ma), rifting on the southern margin (100‐84 Ma), and opening of the southern seaway between Australia and Antarctica (60‐47 Ma)

    Zircon ages in granulite facies rocks: decoupling from geochemistry above 850 °C?

    Get PDF
    Granulite facies rocks frequently show a large spread in their zircon ages, the interpretation of which raises questions: Has the isotopic system been disturbed? By what process(es) and conditions did the alteration occur? Can the dates be regarded as real ages, reflecting several growth episodes? Furthermore, under some circumstances of (ultra-)high-temperature metamorphism, decoupling of zircon U–Pb dates from their trace element geochemistry has been reported. Understanding these processes is crucial to help interpret such dates in the context of the P–T history. Our study presents evidence for decoupling in zircon from the highest grade metapelites (> 850 °C) taken along a continuous high-temperature metamorphic field gradient in the Ivrea Zone (NW Italy). These rocks represent a well-characterised segment of Permian lower continental crust with a protracted high-temperature history. Cathodoluminescence images reveal that zircons in the mid-amphibolite facies preserve mainly detrital cores with narrow overgrowths. In the upper amphibolite and granulite facies, preserved detrital cores decrease and metamorphic zircon increases in quantity. Across all samples we document a sequence of four rim generations based on textures. U–Pb dates, Th/U ratios and Ti-in-zircon concentrations show an essentially continuous evolution with increasing metamorphic grade, except in the samples from the granulite facies, which display significant scatter in age and chemistry. We associate the observed decoupling of zircon systematics in high-grade non-metamict zircon with disturbance processes related to differences in behaviour of non-formula elements (i.e. Pb, Th, U, Ti) at high-temperature conditions, notably differences in compatibility within the crystal structure

    Arctic Continental Margin Sediments as Possible Fe and Mn Sources to Seawater as Sea Ice Retreats: Insights From the Eurasian Margin

    Get PDF
    Continental margins are hot spots for iron (Fe) and manganese (Mn) cycling. In the Arctic Ocean, these depositional systems are experiencing rapid changes that could significantly impact biogeochemical cycling. In this study, we investigate whether continental margin sediments north of Svalbard represent a source or sink of Fe and Mn to the water column and how climate change might alter these biogeochemical cycles. Our results highlight that sediments on the Yermak Plateau and Sofia Basin exhibit accumulations of Fe and Mn phases compared to average shale. Conversely, sediments from the Barents Sea slope exhibit lower enrichments of Fe and Mn compared to average shale, with the exception of enriched, near‐surface sediment layers. Pore waters from these slope sites provide evidence for Fe and Mn reduction and diffusion of Fe and Mn into near surface sediments, which are susceptible to physical or biogeochemical remobilization. These regional patterns are best explained by the spatial distribution of sea ice coverage and labile organic carbon fluxes to the seafloor. As sea ice continues to retreat and the Yermak Plateau becomes seasonally ice‐free, productivity is expected to increase, which would increase the flux of carbon to the sediments, thereby increasing oxidant demand, and the reduction of Fe and Mn mineral phases. Our results suggest that as sea ice continues to retreat, the Yermak Plateau and other Arctic continental margins could become sources of Fe and Mn to Arctic bottom waters
    • 

    corecore