423 research outputs found

    Flow visualizations of perpendicular blade vortex interactions

    Get PDF
    Helium bubble flow visualizations have been performed to study perpendicular interaction of a turbulent trailing vortex and a rectangular wing in the Virginia Tech Stability Tunnel. Many combinations of vortex strength, vortex-blade separation (Z(sub s)) and blade angle of attack were studied. Photographs of representative cases are presented. A range of phenomena were observed. For Z(sub s) greater than a few percent chord the vortex is deflected as it passes the blade under the influence of the local streamline curvature and its image in the blade. Initially the interaction appears to have no influence on the core. Downstream, however, the vortex core begins to diffuse and grow, presumably as a consequence of its interaction with the blade wake. The magnitude of these effects increases with reduction in Z(sub s). For Z(sub s) near zero the form of the interaction changes and becomes dependent on the vortex strength. For lower strengths the vortex appears to split into two filaments on the leading edge of the blade, one passing on the pressure and one passing on the suction side. At higher strengths the vortex bursts in the vicinity of the leading edge. In either case the core of its remnants then rapidly diffuse with distance downstream. Increase in Reynolds number did not qualitatively affect the flow apart from decreasing the amplitude of the small low-frequency wandering motions of the vortex. Changes in wing tip geometry and boundary layer trip had very little effect

    Assessing and Improving the Local Added Value of WRF for Wind Downscaling

    Get PDF
    Limited area models (LAMs) are widely used tools to downscale the wind speed forecasts issued by general circulation models. However, only a few studies have systematically analyzed the value added by the LAMs to the coarser-resolution-model wind. The goal of the present work is to investigate how added value depends on the resolution of the driving global model. With this aim, the Weather Research and Forecasting (WRF) Model was used to downscale three different global datasets (GFS, ERA-Interim, and NCEP?NCAR) to a 9-km-resolution grid for a 1-yr period. Model results were compared with a large set of surface observations, including land station and offshore buoy data. Substantial biases were found at this resolution over mountainous terrain, and a slight modification to the subgrid orographic drag parameterization was introduced to alleviate the problem. It was found that, at this resolution, WRF is able to produce significant added value with respect to the NCEP?NCAR reanalysis and ERA-Interim but only a small amount of added value with respect to GFS forecasts. Results suggest that, as model resolution increases, traditional skill scores tend to saturate. Thus, adding value to high-resolution global models becomes significantly more difficult.The authors thank Puertos del Estado (Spanish National Ports and Harbour Authority) and AEMET (Spanish Meteorological Agency) for providing buoy and land observational records. This work was partly supported by the projects EXTREMBLES (CGL2010-21869) and CORWES (GL2010-22158-C02-01), funded by the Spanish R&D program. The WRF simulations performed in this study were managed by WRF4G, which is an open-source tool funded by the Spanish government and cofunded by the European Regional Development Fund under Grant CGL2011-28864

    Data analysis of gravitational-wave signals from spinning neutron stars. III. Detection statistics and computational requirements

    Full text link
    We develop the analytic and numerical tools for data analysis of the gravitational-wave signals from spinning neutron stars for ground-based laser interferometric detectors. We study in detail the statistical properties of the optimum functional that need to be calculated in order to detect the gravitational-wave signal from a spinning neutron star and estimate its parameters. We derive formulae for false alarm and detection probabilities both for the optimal and the suboptimal filters. We assess the computational requirements needed to do the signal search. We compare a number of criteria to build sufficiently accurate templates for our data analysis scheme. We verify the validity of our concepts and formulae by means of the Monte Carlo simulations. We present algorithms by which one can estimate the parameters of the continuous signals accurately.Comment: LaTeX, 45 pages, 13 figures, submitted to Phys. Rev.

    Scintillation proximity assay for measurement of RNA methylation

    Get PDF
    Methylation of RNA by methyltransferases is a phylogenetically ubiquitous post-transcriptional modification that occurs most extensively in transfer RNA (tRNA) and ribosomal RNA (rRNA). Biochemical characterization of RNA methyltransferase enzymes and their methylated product RNA or RNA–protein complexes is usually done by measuring the incorporation of radiolabeled methyl groups into the product over time. This has traditionally required the separation of radiolabeled product from radiolabeled methyl donor through a filter binding assay. We have adapted and optimized a scintillation proximity assay (SPA) to replace the more costly, wasteful and cumbersome filter binding assay and demonstrate its utility in studies of three distinct methyltransferases, RmtA, KsgA and ErmC’. In vitro, RmtA and KsgA methylate different bases in 16S rRNA in 30S ribosomal particles, while ErmC’ most efficiently methylates protein-depleted or protein-free 23S rRNA. This assay does not utilize engineered affinity tags that are often required in SPA, and is capable of detecting either radiolabeled RNA or RNA–protein complex. We show that this method is suitable for quantitating extent of RNA methylation or active RNA methyltransferase, and for testing RNA-methyltransferase inhibitors. This assay can be carried out with techniques routinely used in a typical biochemistry laboratory or could be easily adapted for a high throughput screening format

    Two-microphone spatial filtering provides speech reception benefits for cochlear implant users in difficult acoustic environments

    Get PDF
    This article introduces and provides an assessment of a spatial-filtering algorithm based on two closely-spaced (∌1 cm) microphones in a behind-the-ear shell. The evaluated spatial-filtering algorithm used fast (∌10 ms) temporal-spectral analysis to determine the location of incoming sounds and to enhance sounds arriving from straight ahead of the listener. Speech reception thresholds (SRTs) were measured for eight cochlear implant (CI) users using consonant and vowel materials under three processing conditions: An omni-directional response, a dipole-directional response, and the spatial-filtering algorithm. The background noise condition used three simultaneous time-reversed speech signals as interferers located at 90°, 180°, and 270°. Results indicated that the spatial-filtering algorithm can provide speech reception benefits of 5.8 to 10.7 dB SRT compared to an omni-directional response in a reverberant room with multiple noise sources. Given the observed SRT benefits, coupled with an efficient design, the proposed algorithm is promising as a CI noise-reduction solution.National Institutes of Health (U.S.) (Grant R01 DC 000117)National Institutes of Health (U.S.) (Grant R01 DC DC7152)National Institutes of Health (U.S.) (Grant 2R44DC010524-02

    Nanohertz Frequency Determination for the Gravity Probe B HF SQUID Signal

    Full text link
    In this paper, we present a method to measure the frequency and the frequency change rate of a digital signal. This method consists of three consecutive algorithms: frequency interpolation, phase differencing, and a third algorithm specifically designed and tested by the authors. The succession of these three algorithms allowed a 5 parts in 10^10 resolution in frequency determination. The algorithm developed by the authors can be applied to a sampled scalar signal such that a model linking the harmonics of its main frequency to the underlying physical phenomenon is available. This method was developed in the framework of the Gravity Probe B (GP-B) mission. It was applied to the High Frequency (HF) component of GP-B's Superconducting QUantum Interference Device (SQUID) signal, whose main frequency fz is close to the spin frequency of the gyroscopes used in the experiment. A 30 nHz resolution in signal frequency and a 0.1 pHz/sec resolution in its decay rate were achieved out of a succession of 1.86 second-long stretches of signal sampled at 2200 Hz. This paper describes the underlying theory of the frequency measurement method as well as its application to GP-B's HF science signal.Comment: The following article has been submitted to Review of Scientific Instruments. After it is published, it will be found at (http://rsi.aip.org/

    Structure of a putative NTP pyrophosphohydrolase: YP_001813558.1 from Exiguobacterium sibiricum 255-15.

    Get PDF
    The crystal structure of a putative NTPase, YP_001813558.1 from Exiguobacterium sibiricum 255-15 (PF09934, DUF2166) was determined to 1.78 Å resolution. YP_001813558.1 and its homologs (dimeric dUTPases, MazG proteins and HisE-encoded phosphoribosyl ATP pyrophosphohydrolases) form a superfamily of all-α-helical NTP pyrophosphatases. In dimeric dUTPase-like proteins, a central four-helix bundle forms the active site. However, in YP_001813558.1, an unexpected intertwined swapping of two of the helices that compose the conserved helix bundle results in a `linked dimer' that has not previously been observed for this family. Interestingly, despite this novel mode of dimerization, the metal-binding site for divalent cations, such as magnesium, that are essential for NTPase activity is still conserved. Furthermore, the active-site residues that are involved in sugar binding of the NTPs are also conserved when compared with other α-helical NTPases, but those that recognize the nucleotide bases are not conserved, suggesting a different substrate specificity

    Optical Magnetometry

    Get PDF
    Some of the most sensitive methods of measuring magnetic fields utilize interactions of resonant light with atomic vapor. Recent developments in this vibrant field are improving magnetometers in many traditional areas such as measurement of geomagnetic anomalies and magnetic fields in space, and are opening the door to new ones, including, dynamical measurements of bio-magnetic fields, detection of nuclear magnetic resonance (NMR), magnetic-resonance imaging (MRI), inertial-rotation sensing, magnetic microscopy with cold atoms, and tests of fundamental symmetries of Nature.Comment: 11 pages; 4 figures; submitted to Nature Physic

    The structure of BVU2987 from Bacteroides vulgatus reveals a superfamily of bacterial periplasmic proteins with possible inhibitory function.

    Get PDF
    Proteins that contain the DUF2874 domain constitute a new Pfam family PF11396. Members of this family have predominantly been identified in microbes found in the human gut and oral cavity. The crystal structure of one member of this family, BVU2987 from Bacteroides vulgatus, has been determined, revealing a ÎČ-lactamase inhibitor protein-like structure with a tandem repeat of domains. Sequence analysis and structural comparisons reveal that BVU2987 and other DUF2874 proteins are related to ÎČ-lactamase inhibitor protein, PepSY and SmpA_OmlA proteins and hence are likely to function as inhibitory proteins
    • 

    corecore