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ABSTRACT

Limited area models (LAMs) are widely used tools to downscale the wind speed forecasts issued by general

circulationmodels. However, only a few studies have systematically analyzed the value added by the LAMs to

the coarser-resolution-model wind. The goal of the present work is to investigate how added value depends on

the resolution of the driving global model. With this aim, the Weather Research and Forecasting (WRF)

Model was used to downscale three different global datasets (GFS, ERA-Interim, and NCEP–NCAR) to a

9-km-resolution grid for a 1-yr period. Model results were compared with a large set of surface observations,

including land station and offshore buoy data. Substantial biases were found at this resolution over moun-

tainous terrain, and a slight modification to the subgrid orographic drag parameterization was introduced to

alleviate the problem. It was found that, at this resolution, WRF is able to produce significant added value

with respect to the NCEP–NCAR reanalysis and ERA-Interim but only a small amount of added value with

respect to GFS forecasts. Results suggest that, as model resolution increases, traditional skill scores tend to

saturate. Thus, adding value to high-resolution global models becomes significantly more difficult.

1. Introduction

In recent years, the growing relevance of wind power

has caused a surge of interest in improving the accuracy of

existing surface wind forecasts (Costa et al. 2008). This

variable is strongly affected by local topography and

other natural or human obstacles. In this context, dy-

namical and/or statistical downscaling are essential tools

to improve the forecasts issued by coarse-resolution

global models. The dynamical approach is usually based

on the use of limited area models (LAM) operating on a

region of interest and driven at the boundaries by the

output of the global model. LAMs provide appropriate

resolution and parameterization schemes to resolve me-

soscale phenomena and orographic forcing.

There are relatively few studies in the literature ana-

lyzing the added value of dynamical downscaling as
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compared with the driving global model wind output.

Over sea, Winterfeldt et al. (2011) and Feser et al. (2011)

found added value in regions close to the coast, using

satellite measures and the Regional Model (REMO)

driven by a coarse-resolution reanalysis, the NCEP–

NCAR, with grid cells of 1.8758. This was confirmed also

with buoy data (Winterfeldt andWeisse 2009).Menéndez
et al. (2014) carried out a longer-term study considering

the WRF Model driven by both the NCEP–NCAR re-

analysis and ERA-Interim. Using satellite observations

as a reference, they found substantial added value with

respect to the NCEP–NCAR reanalysis, as in previous

studies. However, with respect to the higher-resolution

(0.78) ERA-Interim, added value was found to be con-

fined to a few grid points close to the coastline.Over land,

Jiménez et al. (2010) showed added value ofWRF at very

high resolution (2km) over a small region with complex

terrain. Again, the reference driving fields were relatively

coarse reanalysis (1.1258) and analysis (18) data from the

EuropeanCentre forMedium-RangeWeather Forecasts.

It is clear that the added value of wind downscaling de-

pends on the geographical complexity of the area under

study. It is hard to add value over flat regions (e.g., over

the sea) and easier over mountainous regions (Mass et al.

2002). Another recent study (Pryor et al. 2012) showed

not much gain in skill by increasing the resolution of a

regional model from 50 to 6.5km over flat terrain in

northern Europe. Therefore, we selected a relatively

large region and evaluated the added value on complex

and flat terrain and also over sea (Fig. 1).

Although there is a consensus about the capability of

regional models to add value to the wind simulated by

coarser global models, it is not clear how it depends on

the resolution of the driving model, and whether it is

possible to detect it with traditional skill scores such

as root-mean-square error (RMSE). These scores are

very sensitive to phase errors. As the higher-resolution

models reproduce sharper changes in the fields, RMSE

and other traditional scores can appear to be worse than

in coarser models [see Fig. 16 of Mass et al. (2002) for a

clear example]. Some attempts to solve this include

object-based validation (Rife and Davis 2005), allowing

phase shifts to find added value for 3.5-km forecasts in a

complex terrain region. However, added value was found

only in mountain stations, being very small for valley

stations. Horvath et al. (2012) evaluated LAM simula-

tions with different resolutions using spectral analysis and

RMSE decomposition. They found that phase errors ac-

counted for most of the RMSE, and that their effects in-

creased with resolution. They also found that, in terms

of variance, the resolution improved the results in the

three bands that they defined (synoptic, diurnal, and

subdiurnal). Herein we compare 6-h reanalysis data,

so such a detailed spectral analysis is out of the scope of

this paper. Thus, the main goal is to check how the added

value, detected using traditional skill scores, diminishes

as one considers higher-resolution driving GCMs.

Moreover, although LAM outputs should be evalu-

ated using areal-representative gridded observations

(Osborn andHulme 1997), to our knowledge, no gridded

products based only on observations exist for daily or

hourly wind. Because of the very local features of this

variable, the spatial interpolation remains as a challenge.

Therefore, in this paper we use local observations in

Spain (from both stations and buoys) and focus in the

assessment of the added value of LAM for wind speed

prediction using the WRF Model and considering three

widely used global datasets with different resolutions

(;30, 80, and 200km). This will allow us to analyze the

added value as a function of the resolution of the driving

global model and estimate the potential improvement

that could be obtained considering state-of-the-art

global predictions (such as the GFS model used in this

paper). The effect of the time aggregation (to 6-h and

daily scale) in the assessment of the added value is also

studied. Last, a modification to the subgrid orography

drag parameterization, which significantly improves the

model bias, is proposed.

2. Data and methods

The period of analysis in this work consists of one

annual cycle (from March 2011 to February 2012), in

which both subdaily wind observations and predictions

were available.

a. Observations

Hourly observational data of instantaneous wind speed

in a number of locations (land stations and buoys) were

obtained for the analysis period from the Spanish Mete-

orological Agency (AEMET) and the National Port

Authority (Puertos del Estado), respectively. Most of

these stations are automatic, and, although they are reg-

ularly maintained, there are many sources of possible

errors: calibration problems, missing data, inadequate

station location, and so on. Only those locations with less

than 25% of missing data in the target period were con-

sidered in this work. Apart from missing values, other

quality checks were also performed to discard suspicious

locations. These checks were based on the presence of too

many outliers and/or a large frequency of zerowind speed

values (above 15%of the total records). In total, after this

quality check, data from 152 land stations and 9 buoys

were used in this work (see Fig. 1, bottom). All the land

stations measure the wind at 10-m height, but the buoys

do it at 3m. Thus, the buoy records were extrapolated to
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10musing the wind profile power lawwith an exponential

coefficient of 0.11, following Hsu et al. (1994).

The overall skill of themodels has been assessed using

robust statistics (median, quantiles) over the whole set

of individual statistics of each station, represented as

box plots. This way we overcome the effect of dubious or

possible miscalibrated individual stations. Stations with

very low correlation or high bias were inspected for

possible mistakes. However, unless they showed clear

symptoms of being wrong, they have been retained.

b. WRF Model configuration

In the present work, we used the WRF Model

(Skamarock et al. 2008). Namely, the Advanced Research

WRF (ARW), version 3.4 (V3.4), was used. The WRF

Model is a community-developed LAM led by NCAR.

In contrast with most other models, WRF is an open-

source model that can be configured in many different

ways. This includes choosing among a large set of pa-

rameterization schemes. In the present work, the

standard parameterization schemes have been config-

ured for the analysis region (the Iberian Peninsula)

using the experience of previous works (García-Díez
et al. 2012; Menéndez et al. 2014): the Yonsei Univer-

sity scheme for the planetary boundary layer (Hong

et al. 2006), WRF single-moment 5-class scheme for

microphysics (Hong et al. 2004), Kain–Fritsch scheme

for cumulus (Kain 2004), Rapid Radiative Transfer

FIG. 1. (top) Two nested model domains at 27- and 9-km resolution and the corresponding

model orography. (bottom) Location of the land stations (black dots) and buoys (red dots) in

the inner domain.
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Model for longwave radiation (Mlawer et al. 1997),

Dudhia scheme for shortwave radiation (Dudhia 1989),

and Noah land surface model for land soil processes

(Chen and Dudhia 2001).

In addition to that, a new subgrid orography param-

eterization (SOP; Jiménez andDudhia 2012, hereinafter

JD2012) was introduced in WRF V3.4 to remove the

large wind biases found in previous versions—surface

wind speed was overestimated in flat and valley regions.

This was attributed to a lack of representation of the

effect of the unresolved orography in the surface drag.

JD2012 also found an underestimation of the wind over

hills and mountain ridges. To solve this, they introduced a

parameterization of the surface drag that was originally

represented by a sink term in the momentum equation,

dependent on the friction velocity. JD2012 introduced a

weighting factor Ct in this term that depends on the sub-

grid topography variance (ssso) and the Laplacian of the

terrain height (D2h). This factor is defined using thresh-

olds, so Ct is larger over valleys and in areas with large

ssso, and tends to zero when D2h,220m, assuming no

drag over hills and mountaintops. JD2012 found that this

correction was successful in reducing the large biases

found. Furthermore, they found significant added value

when comparing their 2-km simulation with the driving

model, which was ERA-40 (Uppala et al. 2005) at 1.1258
resolution.

To assess the added value of this new parameterization,

some experiments have been duplicated in this paper by

switching it on and off. Note that JD2012 is not activated

by default in WRF V3.4, so the latter option would cor-

respond to the default WRF V3.4 configuration.

c. Global atmospheric models

Three global atmospheric models have been consid-

ered in this work as boundary conditions to drive WRF

to assess the value added to them:

d The GFS (http://www.emc.ncep.noaa.gov/GFS) is a

global model developed by NCEP (Yang et al. 2006).

Currently, this model runs 4 times per day with T574

resolution (’27km), and it is freely available on the

Internet in a 0.58 (’50km) regular grid. The frequency

of the data is 3 h.
d ERA-Interim (Dee et al. 2011) is a third-generation

reanalysis with T255 resolution (;0.78) and a tempo-

ral frequency of 6 h. It is widely used for downscaling

[e.g., in the Coordinated Regional Downscaling Ex-

periment (CORDEX) framework; Giorgi et al. 2009].
d The NCEP–NCAR reanalysis (Kalnay et al. 1996) is a

classical and somewhat outdated dataset with a coarse

T62 resolution (’1.8758) and a temporal frequency of

6 h. This dataset is still widely used because it covers a

long period (more than 60 yr) and it is free and

lightweight to download.

Note that the GCM data used as boundaries are of

different nature. ERA-Interim and NCEP–NCAR are

reanalyses, which assimilate observations, while the

GFS data are D 1 1 (where D is day) forecasts, which

used observations only in the initial condition. There-

fore, an additional degradation of skill is present inGFS.

As we will show later, even with this degradation, GFS

outperforms both low-resolution reanalyses when com-

pared to observations.

d. Prediction experiments

The model was initialized each day at 1200 UTC and

ran for 36 h, with the first 12 h being used as spinup.

Previous studies found that this running scheme per-

forms well against observations (Lenderink et al. 2009;

Jiménez et al. 2010; Jiménez and Dudhia 2012; García-
Díez et al. 2012) and provides improved day-to-day cor-

respondence compared to continuous runs, even when

nudged toward reanalysis data (Menéndez et al. 2014).

This running scheme is computationally cheap, even

though it sacrifices the small-scale realism of slow-varying

variables, such as soil moisture. For atmospheric vari-

ables, Skamarock (2004) analyzed the kinetic energy

spectra of WRF and found that 6–12h were enough for

the model to generate finescale variability. The model

domain (Fig. 1) encompasses the whole Iberian Peninsula,

an area with complex orography and different climate re-

gimes. The horizontal resolution chosen is 9km, with an

intermediate domain of 27km. This setup allows us to

cover a large domain with a reasonable computational cost.

Five simulations have been produced following this

scheme (see Table 1 formore details).WRF-G,WRF-E,

and WRF-N denote the runs performed with the above

WRF V3.4 configuration (activating JD2012) driven by

GFS, ERA-Interim, and NCEP–NCAR fields, respec-

tively. Moreover, to test the effect of the JD2012 SOP, a

replica of WRF-G was produced but in this one we

switched off the JD2012 parameterization (hereinafter

WRF-G0). WRF-GM denotes an alternative replica

obtained with a modified version of the JD2012 SOP

proposed in the present paper (section 3b). The added

value ofWRF for the different resolutions of the driving

fields can be analyzed by comparing WRF-G, WRF-E,

and WRF-N, whereas the effect of the SOP parameter-

ization can be analyzed by comparingWRF-G,WRF-G0,

and WRF-GM.

e. Intercomparison issues

When dealing with different datasets, care must be

taken so the comparison is fair. In this work we use as
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boundary conditions the (D 1 1) forecasts produced

at 1200 UTC from the GFS model and the (D 1 0)

analysis fields from the ERA-Interim and NCEP–

NCAR reanalysis. Note that we are interested in the

added value of WRF with respect to the corresponding

global wind predictions/analysis. Therefore, we will

mainly focus on measures of relative improvement to

minimize the impact of the different nature of the

driving global fields. However, when comparing with

observations, the runs driven by GFS (as well as the

corresponding direct model outputs) will have the

disadvantage of being affected by the D 1 1 global

forecast error.

In the present study, the different frequencies of the

data considered may also influence the final results.

Station data from AEMET are available with a 10-min

frequency, data from buoys and WRF are saved hourly,

data from GFS are available every 3 h, and finally data

from NCEP–NCAR and ERA-Interim are only avail-

able every 6h. Thus, we present the results with three

different time aggregations: instantaneous 6-h data

(subsampling WRF, GFS, and observations), averaged

6-h data (not available in the case of NCEP–NCAR and

ERA-Interim), and averaged daily data.

Part of the AEMET station data used were included

in the surface synoptic observations (SYNOP) reports.

Thus, the evaluation has been carried out using data

that are partly assimilated in the GCMs. This issue

would be relevant depending on the results. If WRF

could not add value to ERA-Interim or NCEP–NCAR

reanalyses, it could be argued that it is due to the as-

similation of observations. However, as we will see,

WRF is able to add value to these products and the only

challenge is to add value to GFS. This product only

used observations to produce the analysis used as ini-

tial condition. Therefore, our results hold even taking

into account that part of the observations was assimi-

lated in the reanalyses.

Finally, the comparison with point observations is

also a relevant issue, since the datasets have different

horizontal resolutions. As mentioned in the introduc-

tion, models should be evaluated by comparing with

gridded observations representing gridcell averages.

However, that kind of interpolation would require a

very dense wind station network. Another possibility is

to interpolate the model data to the station point,

weighting the nearest grid points and/or using a cor-

rection accounting for the representation error. How-

ever, our aim here is to study the model output as is it,

including the representation error, which should be a

source of added value for the higher-resolution simula-

tions. Therefore, the models were not interpolated to

the station data, but data from the nearest neighbor grid

point were used instead. The land–sea mask of each

model was used to filter out sea (land) grid points when

comparing with inland (buoy) stations. This procedure

significantly improved the results for coastal stations.

3. Results

a. Dependence on driving model resolution

We first analyze the local added value of WRF for

wind forecasting in terms of the resolution of the driving

global fields. To this end, we validate the experiments

WRF-G, WRF-E, and WRF-N and compare the results

with those corresponding to the driving global model

outputs (GFS, ERA-Interim, and NCEP–NCAR, re-

spectively). In particular, we consider the bias (model

minus observed means), variability (model to observed

variance ratio), and temporal (Spearman) correlation.

The box plots in Fig. 2 summarize the results of these

scores for the different locations shown in Fig. 1. The

box edges represent the first and third quartiles (Q25

and Q75), the midline represents the median, and the

whiskers reach the maximum and minimum values,

provided they depart less than 1.5 times the interquartile

range from the edge of the box. Beyond that limit, in-

dividual values are represented as crosses. The three

box plots shown for each model refer, from left to right,

TABLE 1. Characteristics of themodel data used in this paper: topo_wind refers to the subgrid orography drag parameterization; Cy31r2

is the code version of the Integrated Forecast System, the GCM used to produce ERA-Interim. The 1994 means that NCEP–NCAR was

carried out with the 1994 version of the NCEP–NCAR spectral model (Kalnay et al. 1996).

Label Model version Global model Run resolution (km) Data resolution topo_wind

WRF-N 3.4 NCEP–NCAR 9 9 km JD2012

WRF-E 3.4 ERA-Interim 9 9 km JD2012

WRF-G 3.4 GFS 9 9 km JD2012

WRF-G0 3.4 GFS 9 9 km None

WRF-GM 3.4 GFS 9 9 km Modified JD2012

GFS 9.0.1 — T574 ’ 27 0.58 —

ERA-Interim IFS Cy31r2 — T255 ’ 79 0.78 —

NCEP–NCAR 1994 — T62 ’ 210 1.8758 —

1560 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 54



to 6-h instantaneous data (6 h), 6-h averaged data ([6 h])

and daily averaged data ([D]).

Unlike the other scores, bias is not influenced by the

temporal aggregation of the data in any of the experi-

ments. Global models exhibit a positive bias pattern

indicated by the shift of the interquartile box over the

zero axis (i.e., the bias is positive in approximately 75%

of the locations). This shift is larger for NCEP–NCAR

and ERA-Interim than for GFS. TheWRF experiments

also exhibit a positive bias pattern, which is indepen-

dent of the driving global model. WRF-E and WRF-N

slightly improve the median bias of their driving models

(ERA-Interim and NCEP–NCAR, respectively), whereas

WRF-G is very similar to GFS. Two stations appear as

lower outliers with pronounced negative biases in the

WRF experiments: Cabo Villano and Estaca de Bares.

Both are windy stations located on capes and surrounded

by cliffs, obstacles that are not resolved by the model. At

the upper side of the distribution, WRF largely over-

estimates wind in about 8–10 stations, which appear as

upper outliers in the three WRF experiments. This prob-

lem is related to the JD2012 SOP parameterization and

will be analyzed in detail later.

Regarding the variance ratio, in general the median is

close to one for all simulations, but exhibits an in-

creasing trend—together with the variability—as data

FIG. 2. Box plots representing the (top) bias (model 2 observed), (middle) variance ratio

(model/observed), and (bottom) correlation of the local model predicted vs observed wind

speeds during the period of study. The three box plots for each model on the x axis corre-

spond to 6-hourly instantaneous data (6 h), 6-hourly averaged data ([6 h]), and daily averaged

data ([D]), respectively. In the case of ERA-Interim and NCEP–NCAR, as only 6-hourly

instantaneous data are available, the second box plot ([6 h]) cannot be computed and is left

blank. Box plots represent the statistics of the results for the 161 locations—152 land stations

and 9 buoys. Plus signs denote outliers that deviate more than 1.5 times the interquartilic

distance from the closest quartile.Whiskers (vertical lines) extend to theminimum/maximum

value that is not an outlier.
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are temporally aggregated. This yields a systematic

overestimation of the variance for the daily averaged

data, which is more evident in the WRF experiments

(with the exception of the NCEP–NCAR case). There

are also a number of outliers, which correspond to the

same outlier locations reported for the bias.

Finally, correlation increases when aggregating the

data; for instance, correlation is about 0.1–0.2 larger

for the daily data than for the instantaneous ones.

This is consistent with the smaller predictability of

the intradaily variability. The stations with low corre-

lation values (below 0.2) have been individually

checked, and no suspicious behavior has been found.

These results seem related to the poor representa-

tiveness of the model topography for those stations. As

expected, NCEP–NCAR exhibits the lowest correla-

tions among all datasets because of its coarse resolu-

tion, and a great improvement is achieved using WRF

in this case. This is in agreement with Menéndez et al.
(2014). On the other hand, the correlations for ERA-

Interim and GFS are very similar and the added value

of WRF is still appreciable in the former case, but

minor in the latter.

To better analyze the added value of the WRF

experiments—with respect to the corresponding global

outputs—Fig. 3 shows the box plots of Brier skill score

(BSS), computed following the definition given by

Winterfeldt et al. (2011):

BSS5

(
12s2

Fs
22
R for s2

F #s2
E

s2
Rs

22
F 2 1 for s2

F .s2
R ,

(1)

where s2
F and s2

R are the error variances of the model

forecast (e.g., WRF-G) and the reference forecast (e.g.,

GFS), respectively. Error variance is defined as s2 5
(1/N)�N

i51(xi 2 fi)
2, where xi are forecast data and fi are

observed data. BSS takes values in [21, 1], where

positive values indicate added value and negative values

imply that the forecast model performs worse than

the reference. Note that this score mixes the errors in

representing the mean (bias), variability, and phase

(correlation), used in the previous analysis (Murphy

andEpstein 1989). Therefore, to assess the added value in

the temporal correlation, we also considered the corre-

lation differences (CD), obtained as the correlation of

WRF minus the correlation of the driving global model.

In agreement with Winterfeldt et al. (2011), WRF

improves the performance of the NCEP–NCAR re-

analysis for both BSS and CD in the vast majority of the

stations. In the case of WRF-E, added value is sub-

stantially smaller but still appreciable for CD, since the

difference is positive in over 75% of the stations. In case

of WRF-G no appreciable added value is found, and

both models exhibit a similar performance in terms of

correlation, with WRF even worse in terms of BSS.

b. Modification of the subgrid orography drag
parameterization

To understand the reasons for the large biases found

in some stations for the WRF simulations (represented

as outliers in Fig. 2), we analyze the performance of the

JD2012 parameterization in our particular case study.

This parameterization was shown to successfully correct

the problems related to wind bias reported in the liter-

ature [see Jiménez and Dudhia (2012) for more details].

However, an individual analysis of the outliers found in

our study reveals that the large biases correspond to

stations close to mountain ranges, suggesting that oro-

graphic representativeness problems remain.

Simply stated, JD2012 introduced a multiplicative

factor in the wind drag as a function of the Laplacian of

the topography D2h as follows:

FIG. 3. Box plots of added value for the WRF-G, WRF-E, and

WRF-N models with respect to GFS, ERA-Interim, and NCEP–

NCAR models, respectively, using (top) BSS and (bottom) corre-

lation difference. The plotting convention for 6 h, 6-hourly aver-

aged data [6 h], and daily averaged data [D] is as in Fig. 2.
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Ct 5

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

1 if D2h.220 and ssso, e

lnssso if D2h.210 and ssso. e

a lnssso 1 (12a) if D2h 2 [220,210)ssso. e

dmod1
D2h1 30

10
(12 dmod) if D2h 2 [230,220)

dmod if D2h,230

, (2)

where ssso is the variance of the subgrid orography,

computed from a ’100-m-resolution dataset, and

a5 (D2h1 20)/10. The original definition of JD2012

corresponds to dmod 5 0, which effectively leads to a

linear decrease of the drag toward zero when the

Laplacian is smaller than220. This limit was considered

to identify grid cells on mountaintops by JD2012, who

set up the parameterization with 2-km resolution.

However, when using this parameterization at a lower

resolution (e.g., 9-km resolution in this paper), the

smoothing effect of the topography interpolation causes

serious representativeness errors. For such low resolu-

tion, the Laplacian criterion selects an area that extends

well beyond the real mountaintops (not shown). This

leads to extended suppression of wind drag and yields an

unrealistic wind speed overestimation. Therefore, in the

present paper we propose a modification of JD2012

parameterization by not removing the drag in those grid

boxes, but keeping it unaltered with respect to the de-

fault WRF configuration. Note that this is achieved by

using dmod 5 1 in Eq. (2).

To analyze the effect of the above (original and

modified) parameterizations, Fig. 4 shows the results of

three experiments running different versions of WRF

driven by the GFS model output: WRF-G, WRF-G0,

and WRF-GM. This allows comparing the same exper-

iment, but conducted with the JD2012 parameterization

[Eq. (2) with dmod 5 0], with no SOP parameterization

(WRF-G0), and with the modified SOP parameteriza-

tion proposed in this paper [Eq. (2) with dmod 5 1,WRF-

GM], respectively.

As found by JD2012 and others (e.g., Carvalho et al.

2014), the default WRF configuration (WRF-G0, no

subgrid orography drag) suffers from a pronounced

overestimation of the surface wind speed, leading to

systematic positive biases and large variances. However,

the bias outliers found in theWRF-G experiment do not

appear in WRF-G0 (Fig. 4, top), indicating that this

problem is caused by the JD2012 parameterization. This

was the motivation for the modified parameterization

run in experiment WRF-GM, where the factor weight-

ing the surface drag is kept constant (Ct 5 1) for the grid

points with Laplacian below 220m (note that this is

equivalent to using WRF with no SOP in these points).

As can be seen in Fig. 4, this modification not only re-

moves the outliers, but it also clearly improves the spa-

tial bias distribution, which is now centered around zero.

Even if biases improved with the proposed modifica-

tion, variability is underestimated for intradaily data and

correlation remains mostly unaffected. Wind speed

variability in WRF-GM improves as we move from in-

stantaneous to daily mean data. This is consistent with

the WRF underestimation of the daily wind cycle, re-

ported in other studies (Dudhia 2013). WRF-G, however,

shows better variance for the time scales resolving the daily

cycle (6h, [6h]) and overestimates the variance when it is

averaged out.

Regarding the added value of the modified parame-

terization (Fig. 5), it shows a small improvement for

both BSS and CD only for the daily mean values. Given

the resolution difference between WRF (9km) and the

GFS data used (0.58 ’ 50km), more (local) added value

was expected. These results highlight the need of com-

plex metrics/scores involving spatial patterns in the

analysis of added value at this range of resolutions.

c. Spatial distribution of the added value

Figure 6 shows, for each station, the added value (or

lack of, in red) of the differentWRF experiments except

WRF-G0. As shown before, the added value of the

WRF downscaling (white dots) is only evident and

widespread when nested into low-resolution boundary

data (WRF-E and WRF-N), especially regarding the

correlation difference. The spatial pattern of the added

value does not exhibit a clear connection with the

orography or the degree of continentality. For the WRF

simulations nested into GFS, the improvement of the

modification proposed (WRF-GM) with respect to the

original (WRF-G) is also evident. However, the value

added to the driving data does not show any specific

pattern and in roughly half of the stationsWRF worsens

the results according to these added value scores.

The stations affected by the large bias associated with

the wind acceleration onmountaintops can be spotted in
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the WRF-N BSS maps, as they are the only ones where

the BSS is negative (red dots). These stations are limit-

ing with mountain ranges (Fig. 1) and show the larger

BSS improvement when applying our modification

(WRF-GM) to the JD2012 SOP (WRF-G). Therefore,

even though the modification proposed was not tested

on NCEP–NCAR- and ERA-Interim-driven simula-

tions, the few negative BSS spots onWRF-N andWRF-

E are likely to improve with the proposed modification.

As mentioned in the introduction, Spain has a com-

plex topography leading to rich mesoscale features such

as locally channeled winds, sea and mountain breezes,

and coastal areas. Thus, the natural candidates to find

added value in WRF experiments would be for specific

regions related to these features. However, no clear

spatial patterns were found (Fig. 6). Moreover, there are

many cases of neighboring stations with opposite added

value scores (close red and white spots in Fig. 6). This

suggests that the added value depends on the repre-

sentation of very local obstacles. Furthermore, results

show that it is not possible to generally assess the added

value with a small amount of stations. For example,

choosing a subset of 4–5 stations (e.g., central northern

coastal stations), we could conclude that WRF-G is

adding substantial value. When considering the whole

dataset, this is not the case. In the case of offshore buoy

data, substantial added value is found in WRF-N.

However, no added value is found for WRF-E in the

buoys on the Atlantic Ocean, where ERA-Interim al-

ready has very large values of correlation, above 0.9 (see

below). That is, the added value also depends on the

reference skill: where the correlation between the global

model and observations is small, WRF is more prone to

add value. Contrarily, it is hard to add value to a station

where the correlation of the driving data is already high.

To check this, CD of each station was compared with the

correlation between the global model output and the

observations in that station (Fig. 7). The dashed di-

agonal line marks the maximum CD achievable, taking

into account that correlation cannot exceed 1.

FIG. 5. As in Fig. 3, but for the added value of WRF-G0, WRF-G,

and WRF-GM with respect to GFS.

FIG. 4. As in Fig. 2, but for WRF-G0, WRF-G, WRF-GM. The

box plots for the GFS data used as boundaries andWRF-G are the

same as in Fig. 2. They are reproduced here to ease the comparison

with the modified version of the SOP.
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WRF-G (Fig. 7a) adds value to GFS only in about half

of the stations. As expected, the larger added values

(0.4–0.5) correspond to stations showing low correlation

withGFS (below 0.4). There are, however, some stations

with low correlation with GFS and no gain from WRF

downscaling. One of these stations is located in a small

deep valley, not resolved by either WRF or GFS. Buoy

data are very well correlated with GFS (;0.9) and,

FIG. 6. Added value maps for the WRF experiments (except WRF-G0) using the (first and second columns) BSS and (third and fourth

columns) correlation difference. The added value is shown at 6-h instantaneous and daily mean time scales. Each point represents one

station or buoy. Red (white points) represent negative (positive) values, and times signs identify locations with small absolute values

(,0.05). The size of the point represents its value as given in the legend.

FIG. 7. Scatterplots of the correlation difference betweenWRFand theGCMagainst the correlation of theGCMfor (a)GFS andWRF-G,

(b) ERA-Interim and WRF-E, and (c) NCEP–NCAR and WRF-N. Diagonal lines are WRF correlation isolines, readable on the left

scale. WRF adds value to the GCM in the stations lying in the white area. The percentage of stations where WRF adds value is shown on

the top-left corner of each panel. Blue (orange) dots represent buoy (land) stations.
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therefore, WRF adds no value there. WRF-N (Fig. 7c)

adds value to NCEP–NCAR data at most points. Buoy

data showmixed CD added value and correlation values

with NCEP–NCAR. However, they are systematically

well correlated with WRF-N (values around and above

0.8). For ERA-Interim and WRF-E (Fig. 7b), there is an

intermediate situation between GFS and NCEP–NCAR.

In general, these results indicate that, with this reso-

lution,WRF has the potential to improve the correlation

to a maximum value of about 0.9. Additional analyses

were carried out to compare CD added value to topog-

raphy, topography standard deviation, variance, and

variance in the high-frequency bands (not shown), but no

significant patterns were found. Thus, CD seems linked to

local differences between WRF and driving data orog-

raphy that are challenging to identify systematically.

4. Conclusions

A set of 9-km-resolution simulations spanning a 1-yr

period have been carried out with WRF to assess the

dependence of added value on driving model resolution.

Three popular global datasets were used as boundary

conditions: GFS forecasts and ERA-Interim and

NCEP–NCAR reanalyses. The study focused on wind

speed at different time scales (instantaneous, 6-h, and

daily averaged), which were compared to station data

using two added value scores: BSS and CD.

Clear and large added value was found in the WRF

downscaling of the coarse NCEP–NCAR reanalysis, as

found in previous works (Feser et al. 2011). Smaller

added value was found in the downscaling of ERA-

Interim. However, very small or negligible added value

was found in the wind speed downscaled from GFS.

The subgrid orography drag parameterization imple-

mented by JD2012 to correct the WRF surface wind

bias successfully removes the problem from most of

the stations. However, the suppression of wind drag

over grid points with strong negative Laplacian causes a

large overestimation of the wind in a subset of the sta-

tions. While appropriate for high-resolution simulations

(as shown by JD2012), we suggest using the modified

JD2012 with dmod 5 1 for resolutions similar to this

study (;10 km). As expected, the bias reduction greatly

improved the BSS, but only slightly improved the

correlation.

Given that the Iberian Peninsula is a region with a

complex orography, the results found for GFS were

unexpected. WRF, just with the improvement in the

representation of the orography, should add value in

most of the stations. However, according to scores, no

added value was found with respect to the GFS

wind speed.

This might be caused by a suboptimal configuration of

the experiment or by more fundamental predictability

issues. In this work, daily simulations were carried out to

preserve day-to-day correspondence, but no data as-

similation was used for model initialization. Data as-

similation could improve the initial condition, making it

balanced and removing or reducing the need of a spinup

period (Pielke 2002). Also, the daily simulations were

run in parallel, for computational efficiency, which

prevented starting from warm soil. This affects the

downscaling, since soil moisture is restarted from coarse

data every day, and loses part of the potential regional

detail that WRF can develop (Case et al. 2008). These

improvements could probably increase WRF skill, but a

dramatic improvement is unlikely, and the configuration

used is widely used in the literature (Winterfeldt et al.

2011; Hu et al. 2010; Lenderink et al. 2009; Jiménez and
Dudhia 2012). Also, GFS is very well tuned to its reso-

lution. However, the flexibility of WRF, designed to run

in a very wide range of resolutions, could be a short-

coming when compared to carefully tuned models.

The lack of added value with respect to GFS could

also be the result of more fundamental predictability

limitations. Short-lived features of the flow simulated by

WRF might be realistic but not correlated with the ob-

servations. Some studies (Rife et al. 2004; Rife and

Davis 2005), even at finer resolution, show that object-

based evaluation is required to unveil added value. We

showed that, in general, the model skill increases with

the temporal aggregation. The value added to NCEP–

NCAR decreased when considering averaged daily

data, meaning that subdaily scales are an important

contributor to the added value in this case. In the ERA-

Interim case, the added value slightly increased for daily

averaged data. Thus, intradaily variability is much better

resolved by ERA-Interim than by NCEP–NCAR.

There are statistical tools, such as Kalman filters,

that can correct model systematic errors (Cassola and

Burlando 2012). As these tools are not able to improve

correlation, it should be themain focus when looking for

added value. We argue that, if correlation is lost at finer

scales, for applications sensitive to phase shifts (e.g.,

short-term wind energy forecasts), increasing resolution

to a few kilometers or even subkilometer levels might

not be worth the extra computational power. The value

of dynamical downscaling at those scales would then be

confined to the study of the physical structures de-

veloping, and not to the increase of forecast accuracy

itself. More research is needed to identify the sources of

added value in wind speed correlation.

These results illustrate how resolution yields dimin-

ishing improvements to the deterministic forecast skill.

In this scenario, the added value of high-resolution
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dynamical downscaling cannot be taken for granted, at

least for deterministic measures. The great value added

by LAMs to very coarse resolution models (Feser et al.

2011) does not hold for the higher resolutions reached

by modern global models. The potential of LAMs to

improve global models by getting to even higher spatial

and temporal resolutions is limited by fundamental

predictability problems of the smaller scales. This

problem is not only limited to short-term forecasting but

has also emerged in high-resolution regional climate

models, where recent increases in resolution showed no

clear added value as measured by standard evaluation

scores (Vautard et al. 2013; Kotlarski et al. 2014).
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