67 research outputs found

    Evidence of bad recycling practices:BFRs in children's toys and food-contact articles

    Get PDF
    Brominated flame retardants (BFRs) have been used intentionally in a wide range of plastics, but are now found in an even wider range of such materials (including children's toys and food contact articles) as a result of recycling practices that mix BFR-containing waste plastics with “virgin” materials.</p

    Effects of dietary nitrate supplementation on symptoms of acute mountain sickness and basic physiological responses in a group of male adolescents during ascent to Mount Everest Base Camp

    Get PDF
    The purpose of this study was to investigate the effects of dietary nitrate supplementation, in the form of beetroot juice, on acute mountain sickness (AMS) symptoms and physiological responses, in a group of young males trekking to Mount Everest Base Camp (EBC). Forty healthy male students (mean age (SD): 16 (1) yrs) trekked to EBC over 11 days. Following an overnight fast, each morning participants completed the Lake Louise AMS questionnaire and underwent a series of physiological tests: resting blood pressure as well as resting and exercising heart rate, respiratory rate, and peripheral oxygen saturation. The exercise test consisted of a standardised 2-minute stepping protocol and measurements were taken in the last 10 seconds. Participants in the intervention arm of the study consumed 140 ml of concentrated beetroot juice daily, containing approximately 10 mmoles of nitrate, while those in the control arm consumed 140 ml of concentrated blackcurrant cordial with negligible nitrate content. Drinks were taken for the first seven days at high altitude (days 2 to 8), in two equal doses; one with breakfast, and one with the evening meal. Mixed modelling revealed no significant between-groups difference in the incidence of AMS (Odds Rationitrate vs. control: 1.16 (95% CI: 0.59; 2.29)). Physiological changes occurring during ascent to high altitude generally were not significantly different between the two groups (Model Coef (95% CI) – average difference nitrate vs. control: systolic blood pressure, 0.16 (-4.47; 4.79); peripheral oxygen saturation, 0.28 (-0.85; 1.41); heart rate, -0.48 (-8.47; 7.50) (Model Coef (95% CI) – relative difference nitrate vs. control: ventilatory rate, 0.95 (0.82; 1.08)). Modelling revealed that diastolic blood pressure was 3.37 mmHg (0.24; 6.49) higher for participants in the beetroot juice, however this difference was no larger than that found at baseline and no interaction effect was observed. Supplementation with dietary nitrate did not significantly change symptoms of AMS or alter key physiological variables, in a group of adolescent males during a high altitude trekking expedition. There was no evidence of harm from dietary nitrate supplementation in this context. Given the wide confidence intervals in all models, a larger sample size would be required to exclude a false negative result. Our data suggest that prolonged oral nitrate supplementation is safe and feasible at altitude but has little physiological or clinical effect

    ‘‘Beet-ing’’ the Mountain: A Review of the Physiological and Performance Effects of Dietary Nitrate Supplementation at Simulated and Terrestrial Altitude

    Get PDF
    Exposure to altitude results in multiple physiological consequences. These include, but are not limited to, a reduced maximal oxygen consumption, drop in arterial oxygen saturation, and increase in muscle metabolic perturbations at a fixed sub-maximal work rate. Exercise capacity during fixed work rate or incremental exercise and time-trial performance are also impaired at altitude relative to sea-level. Recently, dietary nitrate (NO3-) supplementation has attracted considerable interest as a nutritional aid during altitude exposure. In this review, we summarise and critically evaluate the physiological and performance effects of dietary NO3- supplementation during exposure to simulated and terrestrial altitude. Previous investigations at simulated altitude indicate that NO3- supplementation may reduce the oxygen cost of exercise, elevate arterial and tissue oxygen saturation, improve muscle metabolic function, and enhance exercise capacity/ performance. Conversely, current evidence suggests that NO3- supplementation does not augment the training response at simulated altitude. Few studies have evaluated the effects of NO3- at terrestrial altitude. Current evidence indicates potential improvements in endothelial function at terrestrial altitude following NO3- supplementation. No effects of NO3- supplementation have been observed on oxygen consumption or arterial oxygen saturation at terrestrial altitude, although further research is warranted. Limitations of the present body of literature are discussed, and directions for future research are provided

    Thermal desorption – progressive way of analytical chemistry on plastics and rubbers

    No full text
    Desorpcja termiczna jest to technika pobierania próbek, wykorzystująca ciepło w celu zwiększenia lotności analizowanych substancji w taki sposób, że mogą być usuwane ze stałej osnowy (tworzywa sztucznego, drewna, tekstyliów, wyciągów, piany, włosów, żelu, farby itp.). Umożliwia ona analizę prawie wszystkich rodzajów materiałów na poziomie śladowym, bez wstępnej obróbki próbek. W artykule opisano krótko analityczne podejście do badania wielu materiałów z tworzyw sztucznych / gumy za pomocą desorpcji termicznej z chromatografią gazową połączoną ze spektrometrią masową (TD-GC-MS). Opisano dostępne systemy: bezpośrednią desorpcję termiczną, przekierowaną desorpcję termiczną (zimna pułapka), komorę emisyjną TD-GC-MS, analizę gazów wydzielonych (EGA), a także ich potencjalną przydatność, szczególnie dla przemysłu motoryzacyj¬nego, jak wykrywanie dodatków w tworzywach sztucznych i gumie, lotnych związków organicznych(VOC / SVOC), analizę defektów, ciekłe nastrzyki / ekstrakty / płukanki.Thermal desorption is defined as a sampling technology that utilizes heat to increase the volatility of analytes such that they can be removed (separated) from the solid matrix (plastics, wood, textile, extracts, foam, hair, gel, paint, etc.). Thermal desorption allows analysis of almost all sorts of materials including insoluble materials and complex materials at trace levels without any pretreatment of samples. This paper describes briefly the analytical approach of analyzing a broad range of plastic/rubber materials with thermal desorption gas chromatography coupled with mass spectrometry (TD-GC-MS). In the paper were described available systems: direct thermal desorption, refocusing thermal desorption (cold trap), emission chamber-TD-GC-MS, Evolved-Gas-Analysis (EGA), as well as potential applications for automotive industry: additives from plastic material and rubber, volatile organic compounds (VOC/SVOC), defect analysis, liquid injections/extracts/washes
    corecore