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Improving the accuracy of hand-held X-ray fluorescence spectrometers as a tool for 1 

monitoring brominated flame retardants in waste polymers 2 

A. Guzzonatoa,b , F. Puypec and  S.J. Harrada 3 

An optimised method for Br quantification as a metric of brominated flame retardant (BFR) concentrations present in Waste of Electric and Electronic 4 

Equipment (WEEE) polymers is proposed as an alternative to the sophisticated, yet time consuming GC-MS methods currently preferred. A hand-held X-ray 5 

fluorescence (XRF) spectrometer was validated with Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). Customized standard 6 

materials of specific BFRs in a styrenic polymer were used to perform an external calibration for hand-held XRF ranging from 0.08 to 12 weight% of Br, and 7 

cross-checking with LA-ICP-MS having similar LODs (0.0004 weight% for LA-ICP-MS and 0.0011 weight% for XRF). The “thickness calibration” developed here 8 

for hand-held XRF and the resulting correction was applied to 28 real samples and showed excellent (R2=0.9926) correlation with measurements obtained 9 

via LA-ICP-MS.  This, confirms the validity of hand-held XRF as an accurate technique for the determination of Br in WEEE plastics. This is the first  use of solid 10 

standards to develop a thickness-corrected quantitative XRF measurement of Br in polymers using LA-ICP-MS for method evaluation. Thermal desorption gas 11 

chromatography mass spectrometry (TD-GC-MS) was used to confirm the presence of specific BFRs in WEEE polymer samples. We propose that expressing 12 

limit values for BFRs in waste materials in terms of Br rather than BFR concentration (based on a conservative assumption about the BFR present), presents a 13 

practical solution to the need for an accurate, yet rapid and inexpensive technique capable of monitoring compliance with limit values in situ. 14 

1. Introduction 15 

Processing of waste electrical and electronic equipment (WEEE) presents a potential risk to human and environmental health, in 16 

part due to the high BFR content of a substantial proportion of such items. BFRs such as polybrominated diphenyl ethers 17 

(PBDEs), polybrominated biphenyls (PBBs), and hexabromocyclododecane (HBCDD) are restricted in WEEE at a level of 0.1 18 

weight%. BFRs are a class of flame retardant additives (FRs) added to polymeric materials in a wide variety of consumer goods 19 

(Petreas et al., 2009; La Guardia et al. 2006).. PBDEs, PBBs, HBCDD, 1,2-bis(tribromophenoxy)ethane (TBPE), hexabromobenzene 20 

(HBB) and tetrabromobisphenol A (TBBPA) are common BFRs currently abundant in a large portion of the total stream of WEEE 21 

generated over the past thirty years (Petreas et al., 2009). PBBs and PBDEs are applied as mixtures with compositions that 22 

broadly reflect the average degree of bromination, i.e. the three major technical mixtures of PBDEs commercially available are 23 

Penta-BDE, Octa-BDE and Deca-BDE (La Guardia et al. 2006). As in many applications, BFRs are not covalently bound to the 24 

polymer chain, they have the potential to easily migrate into the environment by volatilization or leaching and because of their 25 

bioaccumulative and persistent behaviour, most of them are classified as Persistent Organic Pollutants (POPs) (Hale et al., 2006; 26 

de Wit et al.,2010; Covaci et al., 2006).  27 

The RoHS recast Directive 2011/65/EU limits values for PBBs and PBDEs at a maximum of 0.1 weight% in homogeneous material 28 

and focusses on waste related criteria acknowledging poor waste management as the root cause of contamination in new items. 29 
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The RoHS directive forces manufacturers to control the presence of RoHS relevant substances in their EEE components from the 30 

upstream perspective i.e. at the design and the procurement stage. Despite this, such chemicals are now being found as 31 

unintentional contaminants in a wide range of goods that do not require flame retardancy, via accidental incorporation  (via 32 

recycling) into items like kitchen utensils and food packaging, (Samsonek et al., 2013) videotapes, children’s toys and household 33 

products (Ashton et al., 2009). To minimise such inadvertent contamination, BFR-treated plastics should be separated during 34 

waste sorting and dismantling from BFR-free plastics, as prescribed in Stockholm Convention’s best available technology (BAT) 35 

and best environmental practice (BEP) . Currently, many waste plastics thought to contain Br are stockpiled, re-used in plastics 36 

that do not require a particular mechanical strength, or incinerated (Schlummer et al., 2006). These procedures result in two 37 

undesirable scenarios: (a) waste plastic containing high percentages of BFRs is recycled by mixing with new (“virgin”) polymers, 38 

thus increasing the quantity of new items contaminated with BFRs and impeding their elimination from the waste stream; and 39 

(b) thermal degradation of PBDEs into highly  toxic halogenated dibenzo-p-dioxins and dibenzofurans (Sakai et al., 2001). 40 

European Standards (IEC62321-3-1) give guidance on WEEE sampling, sample preparation methods and specific measurement 41 

methods. Generally, they describe 2 approaches: total elemental screening and compound specific quantification; the latter 42 

typically requires GC-MS analysis (combined with laborious sample preparation procedures i.e. sub-sample grinding, cryo-43 

grinding, solvent extraction, extract filtration, selective precipitation for oligomer removal, and chromatographic purification).  44 

Alternatively, as described in the test methods IEC 62321, if characterisation of individual brominated compounds is not 45 

required, the total elemental bromine content can be measured using Energy Dispersive X-Ray Fluorescence (ED-XRF) technology 46 

incorporated into hand-held instruments as an “analytical procedure to determine the presence or absence of substances or 47 

compounds in the representative part of a product”
 (IEC62321-3-1). 48 

The European Directive 2002/95/EC stipulates that at least 50% of collected WEEE must be recovered, reused or recycled 49 

(according to the concentration and nature of present contaminants), although the complexity and cost of traditional compound-50 

specific analysis are not justified by the value of the analyzed items. Rapid Br screening by XRF to provide pass/fail evaluation of 51 

legislative compliance is therefore an attractive option (EC No 1907/2006). 52 

Hand-held XRF is a fast, non-destructive in-situ applicable technique that can give accurate and repeatable data at relatively low 53 

cost and minimal use of consumables (Kalnicky et al., 2001). 54 

As concentrations of Br in BFR-containing WEEE are high (percentage levels), the low sensitivity of these instruments (ppm 55 

levels), is not problematic for this application. However, XRF is considered reliable only for pre-screening or screening (IEC 56 

62321) because of its technical limitations, summarised in Table 1 (Stockholm Convention, 2015; MacLeod et al., 2010). 57 

Moreover, XRF is only able to quantify total elemental Br. Any analytical procedure that uses XRF for BFR quantification will 58 

always work on the assumption that all the detected Br originates from organic compounds:a reasonable assumption considering 59 

Br salts are rarely found in polymers. Furthermore XRF is still susceptible to source misclassification– i.e. the incorrect 60 
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assumption that all Br content is due to a specific (usually regulated) BFR, e.g. HBCDD, when some or all of the detected Br arises 61 

from the presence of another BFR. Of the alternative techniques, laser ablation, although promising, still requires optimisation 62 

for elemental analysis of polymers as this -as XRF- is strongly matrix-dependent (Košler, 2008).   63 

This paper reports  an innovative, robust and reliable procedure using hand-held XRF for bromine quantification in polymers as 64 

an alternative BFR metric. To ensure accuracy and minimise  issues in XRF analysis, such as false negatives and negative errors 65 

(Gallen et al., 2014), specially designed solid reference materials are used, the geometry and chemical composition of which are 66 

key to a good matrix-matched calibration and error correction that enables  XRF to quantify rather than simply screen bromine in 67 

polymers. The resulting values were then cross-validated with LA-ICP-MS - also calibrated with bespoke standards- to ensure that 68 

the calibration matches with  matrix.. Finally, to roughly evaluate the qualitative distribution of different BFRs amongst samples, 69 

TD-GC-MS was performed. In keeping with the focus of this study on easy, fast techniques, although TD does not provide 70 

compound specific quantitative results it was used because solid polymers can be directly measured by TD-GC-MS resulting in  71 

practically solvent-free sample preparation. TD-GC-MS is a  proven effective tool for detection of BFRs in polymers, being able to 72 

highlight bad recycling practices by evaluating the presence of different BFRs typically not used in combination, or not required 73 

in a class of consumer’ products (Bart, 2001).  74 

Making this method practically applicable was the priority of this study, therefore the calibration covers a wide dynamic range 75 

for bromine concentrations, as the plastic casings for electrical and electronic equipment might contain BFRs from 0 to 30 76 

weight% (POP Review Committee, 2010). 77 

2. Materials and methods  78 

2.1 Reference materials 79 

 80 

The first step of this study was to design and verify ABS reference materials (RMs) that fulfil the requirements of XRF and LA-ICP-81 

MS analysis containing realistic elemental compositions. The literature shows how, even with optimal ablation conditions, 82 

quantification can be difficult due to the lack of appropriate calibration standards (Stehrer et al., 2010). To  account for the strict 83 

matrix dependence of these two techniques (see SI, 1. Matrix dependence) the RMs must: 84 

- be made of the same plastic as samples; 85 

- cover a wide calibration range from very low to very high concentrations of BFRs, to account for plastic that contains both 86 

unintentionally (e.g. those present in plastic that while not directly flame retarded, contains recycled material that was) and 87 

intentionally added BFRs; 88 

- be homogeneous: in order to exclude intensity fluctuations due to local concentration changes during the laser ablation (Mans 89 

et al., 2009); 90 



 

This journal is © The Royal Society of Chemistry 20xx Chemosphere, 2013, 00, 1-3 | 4 

- contain also BFR co-synergist and other elements commonly used as additives in the plastics under test (e.g. Sb2O3 , CaCO3, 91 

TiO2) (Jakab et al., 2003; Encyclopedia of polymer Science and Technology, 2013).  92 

- have a similar sample mass absorption coefficient for X-rays and be representative of the different ablation behaviour due to 93 

the presence of inorganic fillers in polymers as described by Todoli’ et al.; and 94 

- have a flat surface: XRF works under the assumption of Sherman’s geometry, when the surface of the sample is not flat these 95 

assumptions may fail (Mans et al., 2007). 96 

The standards were produced according to these specifications by Fachhochshule Muenster Labor für Instrumentelle Analytik 97 

(FMLIA). The method used to produce and test the standards is described in detail elsewhere (Mans et al., 2009) but a brief 98 

summary is provided in the SI (2. Solid reference material: preparation and testing). Deca-BDE was added in 9 different 99 

concentrations producing 9 RMs, individually melted into solid cylindrical discs with a diameter of 40 mm at 5 different 100 

thicknesses. 101 

2.2 Sampling 102 

28 samples of various items of EEE were collected from different locations (SI, Table 2), with a preference for styrenic polymers 103 

such as acrylonitrile butadiene styrene (ABS) and high impact polystyrene (HIPS) as they cover the vast majority of the polymers 104 

used for these appliances (Stockholm Convention, 2015). 105 

 106 

2.3 Sample preparation and extraction 107 

 108 

For hand-held XRF, samples were wiped with ethanol, their thickness measured with a digital calliper and then cut into pieces of 109 

at least 8 mm diameter. For LA-ICP-MS, samples analysed previously by hand-held XRF were grouped into two analytical batches 110 

based on Br concentration: low (<LOD - 0.8 weight%) and high (1.6 – 12 weight%) concentration and placed into the ablation cell. 111 

The samples were divided into two batches to minimise background generated by evaporation of low boiling BFRs.  112 

For TD-GC-MS, samples were cut into smaller ca. 2 mm cubes and 0.2 g of sample was dissolved/leached in 1 mL toluene 113 

(GC/ECD-grade residue analysis, Chromservis s.r.o., Prague, Czech Republic).  For extraction of BFRs, toluene was chosen as it 114 

enables high extraction yields for all targeted BFRs. Our TD method is described in detail elsewhere (Hosaka et al., 2005; Puype 115 

et al. 2015; Puype et al., 2008), but a brief summary is provided (in the SI, 3. TD-GC-MS Method  and Sample Preparation).  116 

 117 

2.4 Hand-held X-Ray Fluorescence Spectrometry 118 

 119 
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A Thermo Scientific Niton XL3T Goldd Plus handheld device was used, equipped with a geometrically optimised large drift silicon 120 

detector and a 50 keV x-ray tube. The analysis was performed with a molybdenum filter, the emission fluorescence line chosen 121 

for quantification of Br was Kα1 (11.92 keV) with the relatively less intense Kβ1 used for qualitative evaluation of the spectra 122 

(13.29 keV) (see SI, Table 3 for details). Proprietary Thermo Scientific NDT software was employed to develop a calibration and 123 

empirical optimisation for Br. 124 

Equations correlating thickness and concentration with XRF signal were derived and applied to the NDT software. Spectral 125 

precision was calculated as two times SD between each recursive measurement cycle performed during the sampling period. 126 

Analytical precision was calculated as the RSD of 4 repeated measurements. The 5:1 ratio between the two most intense spectral 127 

lines used for Br (Kα1 and Kβ1) was used to correct for spectral interferences given by overlapping emissions (mainly from Zn 128 

and Al). The double counting effect (two photons with the same energy reaching the detector simultaneously and producing a 129 

response on the spectral line corresponding to double their energy) is corrected for by the firmware doubling the intensity of the 130 

line corresponding to exactly twice the Kα1 for Br.  131 

For XRF the LOD was defined as in ICH1 Guidance (Q2,R1: Validation of Analytical Procedures) as three times the SD of ten 132 

replicate blank measurements (bromine free ABS reference material), and the LOQ calculated as 10 times that SD. 133 

 134 

2.5 Laser Ablation-Inductively Coupled Plasma-mass spectrometry  135 

 136 

LA-ICP-MS was conducted using a Teledyne CETAC Technologies Analyte™ G2 nanosecond excimer laser (ArF) hyphenated to a 137 

Thermo Scientific iCAP-Q ICP-MS. This short-wavelength laser has considerable advantages in enriching the amount of on-surface 138 

absorbed light relative to in-depth transmitted light (Guillong et al., 2003; Gonzales et al., 2002). A digital microscope (Keyence, 139 

Digitales Mikroskop VHS-600DSO) and a depth profiling tool (Mitutoyo SJ-410) were used for crater evaluation. 140 

Thermo Scientific Qtegra ISDS software was used for LA-ICP-MS data acquisition and evaluation, while  Chromium software was 141 

used to control the Analyte G2 LA. Background correction was achieved by selecting a 5 second region of interest (0-5 s) from the 142 

transient signal (laser off) and subtracting its mean intensity (‘gas background’) from the mean intensity of 
79Br in the selected 12 143 

seconds (laser on) region of interest (16-28 s): mean count rates are used instead of time integrated signals as the background 144 

and the region of interest for 79Br have different acquisition times (Longerich et al., 1997). The uncertainty of each measurement 145 

(expressed as relative standard deviation - RSD) was calculated as the SD between each sweep over the selected region of 146 

interest divided by the mean count rate in that region and multiplied by 100. A 20 second measurement of sample ablation 147 

required approximately 520 sweeps. Ten points per spectral peak were acquired with the most intense of those selected for 148 

quantification. Measurement precision was calculated as the SD between two replicate line scans on different positions on the 149 

sample (but within the 8 mm diameter sampling area similar to XRF). For both these values the heterogeneity of the samples 150 
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might give a contribution (Danyushevsky et al., 2011) which will vary with the element analysed (Stehrer et al., 2010). Although 151 

cryogenic milling of the samples has been proven to reduce this influence on the RSD (Stehrer et al., 2010), it was not used in this 152 

study as doing so would defeat the purpose of an inexpensive technique with no sample preparation. The LOD for this technique 153 

was calculated as three times the SD of the blank response (Br-free RM) divided by the slope of the calibration curve, according 154 

to ICH1 Guidance (Q2,R1: Validation of Analytical Procedures) A polyatomic plasma-based interference for 79Br is given by 155 
40Ar38Ar1H+, 40Ar39K+, 31P16O3+ and for 81Br by 40Ar40Ar1H+, 32S16O3H+ and 33S16O3+. To remove these interferences the collision 156 

reaction cell of the ICP-MS was pressurised with a mixture of 7 v/v% H2/He as collision gas in order to perform kinetic energy 157 

discrimination on the unwanted polyatomic interferences. Br was quantified based upon 79Br signal intensity with  81Br measured 158 

to evaluate deviations from the 79Br to 81Br isotopic ratio. It can be assumed that oxides and polymer samples vaporise at 159 

different depths into the ICP, giving a different ionisation yield. As this study focuses on Br determination as a surrogate metric 160 

for BFRs, we chose to optimise the sampling depth especially for Br (present as an organic species), which was a trade-off against 161 

the quantification of other elements (e.g. Sb and Ti) present as oxides in the reference materials. For this reason and also 162 

because of poorer homogeneity of these oxides (see SI, 2. Solid Reference Material: preparation and testing), Sb and Ti were 163 

excluded from subsequent evaluations. 164 

 165 

2.6 Thermal desorption Gas Chromatography-mass spectrometry 166 

For the identification of BFRs, a TD unit (Multi-Shot Pyrolyser EGA/PY-3030D, Frontier Laboratories LTD., Koriyama, Japan) 167 

equipped with a 48-position auto-sampler (Auto-Shot Sampler AS-1020E, Frontier Laboratories LTD., Koriyama, Japan) was 168 

interfaced with a GC-MS (GC-MS QP2010 Plus, Shimadzu, Kyoto, Japan). Several BFRs like higher brominated PBDEs are heat 169 

sensitive and may debrominate at elevated temperatures; therefore a short residence time is favoured on the separation column 170 

(Ultra ALLOY-PBDE; 0.25 mm inner diameter x 15 m; 0.05 μm dimethyl polysiloxane film, Frontier Laboratories LTD., Koriyama, 171 

Japan).  172 

All samples were analysed in duplicate with further QA/QC provided by conducting multiple blank measurements to check for 173 

analyte carryover between samples. Method accuracy was assessed by analysis of a certified reference material (ERM-EC591, a 174 

polypropylene (PP) sample containing decabromobiphenyl, along with Penta-, Octa- and Deca-BDE at realistic concentration 175 

levels (200-700 mg kg-1)). This method is limited to BFR identification, and not recommended for BFR quantification as polymers 176 

possess very diverse hardness. The variation in polymeric sample matrices results in variable extraction efficiencies for each BFR, 177 

making calibration for quantitative measurement of BFRs in different polymer matrices very difficult. Moreover, in recycled 178 

polymer fractions, debrominated, oxidised and hydrolysed substances appear and in some cases degradation products indicate 179 

the presence of originally added BFRs (e.g. tribromobisphenol A indicates the presence of TBBPA). Hence, this method works 180 

mainly as a screening method for common BFRs and their degradation products. Target analytes are: PBBs, PBDEs, HBCDD, 181 
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TBBPA, tetrabromobisphenol A bis(2,3-dibromopropyl ether) (TBBPA-DBPE), bromophenols, BTBPE, tetrabromobisphenol A 182 

bismethylether (TBBPA-BME), HBB, and other substances which can be identified in full scan mode (up to 1090 m/z) by electron 183 

impact ionization (70 eV) as this method uses the combination of full scan and single ion monitoring in one run. The method is 184 

capable of identifying BFRs down to a bromine level of 10 ppm.  185 

3. Results and discussion 186 

3.1 Development of ad-hoc thickness correction for ABS with XRF 187 

This calibration approach comprised measuring the intensities non-corrected for thickness for each concentration level of the 188 

solid reference materials at different thicknesses. These concentration values were plotted against thickness (Fig. 1). The 189 

obtained “thickness calibration curve” showed similarities with the exponential Attenuation Law for photons in matter (Lambert 190 

Law of Absorption).Therefore, a generic negative exponential function (1) was chosen as the starting point for our model.  191 

                                                                            192 

Where I=signal; I0=signal for infinite thickness; D=thickness in mm; a is a parameter regulating the offset with respect to the y 193 

axis; b is a function of the material in terms of mass absorption: defined as the linear absorption coefficient. The inverse of b, is 194 

what we defined as “infinite thickness”, to which corresponds the concentration value found on the plateau of the exponential 195 

function (N.B. the assumption that b remains constant when the Br concentration changes is an approximation); and c is the 196 

parameter that regulates the slope of the unsaturated region of the function. To fit this equation to our empirical results, these 197 

parameters were varied recursively until the squared deviation was minimised (using Excel’s ‘Solver’ algorithm). The value of b 198 

was found to be 0.26, hence the calculated “infinite thickness” (1/b) was 3.85 mm which, in fact, from the graph in Fig. 1 looks to 199 

be the starting saturation point. Once the parameters for this equation were calculated, it was solved for I0 in order to adjust the 200 

uncorrected signal I to the sample thickness (2).  201 

 202 

   
 

                                                        

 203 

Hence, for given values of signal intensity and thickness of the sample, the equation returns the value of intensity corresponding 204 

to the “infinite thickness” (see Fig. 1). 205 

The accuracy of this method was evaluated by comparing the corrected values obtained from the thickness calibration and the 206 

reference values, according to the formula (3): 207 

 208 
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Accuracy (%) = ((Reference – (Measured – Reference)/Reference)*100         (3) 209 

 210 

Average accuracy without thickness correction for thin layers (1-3 mm) was 82.8%, while after the thickness correction the 211 

accuracy is improved to 93.9%. This value is satisfactory considering that a value of 89% on one single- controlled standard was 212 

obtained in a very recent study (single measurement)(Igzi et al., 2015). We next evaluated  the method uncertainty (precision) as 213 

the SD between four replicates. For RMs this value is independent on the homogeneity of the material (because both macro and 214 

micro homogeneity were tested for these RMs). Differences between measured RMs and their reference concentrations were 215 

always within the measurement uncertainty (Fig. 2). The LOD was 0.0011%, while LOQ was 0.0036%. 216 

  217 

3.2 Method development and matrix matched calibration with LA-ICP-MS 218 

After tuning the ablation parameters and the ICP parameters (see SI, Table 4 and 5), calibration was performed with the nine 219 

RMs containing different concentrations of Br (see SI, Table 1). 220 

An initial attempt was made to place all the RMs and samples in the ablation cell. Unfortunately the background produced by the 221 

higher Br concentration RMs and samples was too high to obtain valuable information out of the lower concentration  samples 222 

as described in the section 2.3 Sample preparation and extraction. Consequently, a calibration was first performed on the four 223 

low concentration RMs (0%, 0.08%, 0.4% and 0.8% Br,See SI, Fig. 5). The equation fitting this plot was used to translate into 224 

concentrations the count rates of 79Br in the low concentration samples placed in the cell together with the low concentration 225 

RMs. The same procedure was followed for the high concentration RMs (1.6%, 2.4%, 5.7%, 8.0% and 12.0% Br) placed in the cell 226 

with high concentration samples (See SI, Fig.5). For the low Br concentration batch the R2 was 0.9990, while for the high Br 227 

concentration batch, R2 was 0.9986. 228 

The average accuracy obtained for the reference materials (calculated using equation (3)) was 93.3%, with lowest values of 229 

78.8% and 79.2% obtained for the two RMs that have a concentration of Sb equal or exceeding that of Br. This suggests a 230 

negative influence of Sb on measurements of Br. It has been shown (Evans et al., 1993) that the matrix effect depends on the 231 

concentration of the matrix-element itself rather than the matrix-element to analyte-element ratio, so this loss of accuracy is 232 

more likely ascribable to a particle effect.  For each RM the difference between the measured value and the reference was within 233 

the measurement uncertainty (SM, Fig. 6). The LOD for 79Br was 0.0004% while LOQ was 0.0012%.  234 

3.3 Comparison between XRF and LA-ICP-MS Br data 235 

The Br data measured by XRF and LA-ICP-MS displays excellent accordance (Fig. 3, inset graph) and the XRF thickness correction 236 

accounted for up to 46% increase in measured Br. The differences in Br concentrations between these techniques fall within 237 

analytical uncertainty (RSD of each measurement for LA-ICP-MS, 2V error for XRF; error bars in Fig. 3) for most samples. For LA-238 
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ICP-MS the average precision for all samples given by the RSD between two line scan replicates was 5.9%; for XRF it was 1.5%. 239 

The average RSD of 79Br counts on each line scan was 10.7% (although better results have been observed in specific 240 

measurements) a reasonably good value compared with: (a) an RSD of 15% obtained elsewhere for Br in line scans on polymers 241 

(Izgi et al., 2005), (b) prior literature on line scans on polymers (Stehrer et al., 2010), and (c)raster scans of styrenic polymers 242 

(Marshall et al., 1991). Moreover, a higher RSD based on the measurement points of a line scan with respect to the RSD 243 

calculated between two line scan repetitions, corroborates the hypothesis of micro-homogeneity of the samples exerting a 244 

greater influence on the time signal fluctuations. As expected, the LOD for LA-ICP-MS was almost a factor of 3 better than XRF 245 

(LOD for LA-ICP-MS was 0.0004% and 0.0011% for XRF) and overall satisfactory for LA-ICP-MS considering the matrix and the 246 

high ionisation potential of Br. In a recent study (Izgi et al., 2005) the LOD for LA-ICP-MS determination of 79Br was  as 0.0612% in 247 

plastic. The accuracy of both techniques (XRF and LA-ICP-MS) is comparable (respectively 93.9% and 93.3%) while high 248 

accordance between data produced by both techniques demonstrates our XRF thickness correction represents an improvement 249 

on previous use of hand-held XRF  for Br screening on polymers that reported false positives using XRF (e.g. Gallen et al., 2014). 250 

Moreover, our method delivers quantitative determination of Br in WEEE using hand-held XRF.   251 

3.4 Results for TD-GC-MS 252 

The BFRs most frequently detected in our WEEE samples are Deca-BDE and TBBPA (SI, Table 6). Generally, samples contained 253 

one or two different BFRs; however, in some cases several different BFRs were detected. This suggests the use of recycled WEEE 254 

fractions in such samples, and highlights the potential for source misclassification whereby a Br signal may be incorrectly 255 

attributed to a single specific regulated BFR. Our data also confirm the majority of old monitor casing samples to contain BFRs, 256 

while more recent appliances show a higher number of Br-free polymers 257 

4. Conclusions 258 

Empirical corrections and tuning for hand-held XRF and LA-ICP-MS provided more accurate and precise Br data for WEEE plastics 259 

compared with uncorrected data and recent literature on Br analysis in polymers using LA-ICP-MS and XRF (Izgi et al., 2015). 260 

Therefore, automating these analytical techniques would greatly benefit Br analysis. Key findings from our study are that Br 261 

quantification by hand-held XRF can be improved substantially by use of a matrix matched thickness correction; the matrix matched 262 

calibrations presented here yielded excellent correlation between Br data obtained for the same samples using hand-held XRF 263 

and LA-ICP-MS. This suggests hand-held XRF constitutes an accurate, rapid, inexpensive technique for on-site quantification of Br 264 

in WEEE plastics; finally, TD-GC-MS detected in many samples only one or two BFRs, however in some cases a mixture of 3 or 4 265 

BFRs was found. The presence of several BFRs in one sample may indicate the presence of a WEEE recycled fraction. 266 
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This simplified BFR quantification cannot remedy illegal dumping in landfills (where single-item screening would not be 267 

practically possible), but it is an easy to operate, accurate, affordable, rapid method that may provide an appropriate solution in 268 

recycling and sorting plants as well as control laboratories.  In particular, XRF screening has potential for use in dismantling 269 

plants, especially those handling CRT monitors and TVs, where such items are separated from other WEEE to permit recovery of 270 

glass from CRT screens. LODs for both hand-held XRF and LA-ICP-MS fell far below the lowest of the low POP concentration limits 271 

(LPCLs) in Annex IV of the POP Regulation for BFRs in plastics (EC No 850/2004); therefore these techniques are capable of 272 

addressing current legislation but are also future proofed against further reductions in the maximum concentration levels. 273 

 274 

Given its advantages of speed and relatively low cost, hand-held XRF holds much promise as the method of choice for high 275 

throughput monitoring of compliance with legislative limits on BFR concentrations in WEEE. However, although the current limits 276 

such as EU directive 2011/65/EU are specified in terms of the concentration of the BFRs, XRF can only measure elemental Br. 277 

This presents a practical problem, as for example if limit for PBDEs is 0.1%, then if the XRF reports 0.075% in weight of Br, this 278 

equates to 0.090% BDE-209, but 0.106% Penta-BDE. In other words, the limit is exceeded if the Br is due to Penta-BDE but not if 279 

it results from the presence of Deca-BDE. A possible practical “work-round” is to specify the limit in terms of Br, but making a 280 

conservative assumption that it originates from the presence of a widely used BFR with the lowest proportion of Br, such as 281 

Penta-BDE. While doing so will result in some marginal false exceedances of the limit, it will facilitate the widespread use of 282 

hand-held XRF to monitor compliance with limit values. Given the enormous mass of WEEE and waste soft furnishings that 283 

contain BFRs, the implementation of such an accurate yet rapid and relatively inexpensive monitoring technique is essential, as 284 

large-scale application of traditional GC-MS and LC-MS methods appear uneconomic.  285 
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Table 1  Current limitations of XRF and LA-ICP-MS analysis for the quantification of BFRs in polymers and improvement strategies using 

the combined XRF, LA-ICP-MS and TD-GC-MS instrumentation for this current study. 

Technique Specification Proposed solution/measures applied  

XRF Standard reference material is only available in pellets 
and only at very low Br concentrations 

Use customised reference material containing BFRs at 
a relevant concentration range. Method evaluation 
specifically by combining XRF and LA-ICP-MS 
measurements 

 Very thin plastics can give errors: 
- negative: because the absorption of 

radiation is dependent on the sample 
thickness, the sample is too thin as 
polymeric matrixes are virtually transparent 
to XRF. No absorbance of secondary 
emissions is performed by the material itself.  

- positive: because Br fluorescence might 
originate from components located beneath 
the plastic housing (e.g. circuit boards) 

 
- develop a thickness calibration to provide a 

correction equation to account for the 
influence of polymer thickness on measured 
Br concentration  

- samples and standards needs to be 
measured disassembled from the item and 
using a lead-lined auto-sampler stand to 
avoid contamination from beneath the 
sample 

 Br might not come from BFRs:  
- due to the presence of inorganic Br 

 
 

- Spectral interferences (other elements with 
similar fluorescence energy, overlapping Br 
emission lines) 

 
- Br measurements compared with a BFR 

specific identification method (i.e. TD-GC-
MS) 

- Ratio between the two main X-ray 
fluorescence lines for Br (Kα1 and Kβ1) is 
used to normalise the most intense line.  

 Analysis of plastics with high levels of BFRs display 

substantial negative error due to self-absorption 

Low and high concentration level reference materials 

are used for calibration 

LA-ICP-MS Solid standards that ablate in the same way of the 

samples for calibration are needed 

A set of calibration materials based on ABS containing 

commonly used additives and fillers were used. 
 

 Difficulty to use internal standards97 External calibration was performed with the 9 calibration 
materials 

 Sample inhomogeneity might cause not representative 

results for Br concentration measurements 

Macroscopic homogeneity of reference material was 

assessed with XRF; microscopic homogeneity was 

assessed with synchrotron radiation µ-XRF 
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Fig. 1 Measured Br concentration by XRF against thickness for different concentration levels of the RMs. Proposed model (equation (2)) for the 
fitting function (black line). 

Figure



 

Fig. 2 XRF accuracy was measured comparing the reference value to the corrected values of Br (wt. %) measured at the infinite thickness. Error 
bars for the measured concentrations are the SD between the 3 replicates done for each measure at infinite thickness; error bars for the 
reference concentration are uncertainty of the NAA used to validate the RMs. Concentrations reported without correction show negative errors 
for RM 1-3 and positive errors for RM 4-9: this effect is a direct result of Compton scattering, the Compton scatter intensity increases with the 
decreasing of the average atomic number of the scattering material, when the Br (Z=80) amount relative to the C in  the matrix (Z=12) decreases 
under a certain threshold the MAC of the material decreased, and the Compton scattering has a more prominent effect . Being this an effect of 
varying MAC, it is as well accounted for in the thickness correction. 
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Fig. 3 Comparison between LA-ICP-MS measured values and thickness corrected XRF measured values. On the bottom the corresponding 
thickness for each sample. Inset plot: correlation between LA-ICP-MS results and XRF. The thickness corrected results (blue dots) show a better 
correlation (R2=0.9926 for 28 samples) compared to the correlation ((R2=0.8788 for 28 samples) of the non-corrected XRF results (red dots). The 



circled red dot (in the inset) shows a bigger deviation from the LA-ICP-MS results: this is in fact a very thin sample (0.69 mm) circled thickness 
bar, hence when the thickness correction is not applied the negative error is substantially bigger. 
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An optimised method for Br quantification as a metric of brominated flame retardant (BFR) 

concentrations present in Waste Electrical and Electronic Equipment (WEEE) polymers is 

proposed as an alternative to the sophisticated, yet time consuming GC-MS methods currently 

preferred. A hand-held X-ray fluorescence (XRF) spectrometer was validated with Laser 

Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). Customized standard 

materials of specific BFRs in a styrenic polymer were used to perform an external calibration for 

hand-held XRF ranging from 0.08 to 12 weight % of Br, and cross-checking with LA-ICP-MS 

having similar LODs (0.0004 weight % for LA-ICP-MS and 0.0011 weight % for XRF). The 

“thickness calibration” developed here for hand-held XRF and the resulting correction, was 

applied to 28 real samples and showed excellent (R2=0.9926) accordance with measurements 

obtained via LA-ICP-MS. This confirms the validity of hand-held XRF as an accurate technique 

for the determination of Br in WEEE plastics. This is the first use of solid standards to develop a 

thickness-corrected quantitative XRF measurement of Br in polymers using LA-ICP-MS for 

method evaluation. Thermal desorption gas chromatography mass spectrometry (TD-GC-MS) 

was used to confirm the presence of specific BFRs in WEEE polymer samples. We propose that 
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expressing limit values for BFRs in waste materials in terms of Br rather than BFR concentration 

(based on a conservative assumption about the BFR present), presents a practical solution to 

the need for an accurate, yet rapid and inexpensive technique capable of monitoring 

compliance with limit values in situ. 

 



Text 

Fig. 1 Measured Br concentration by XRF against thickness for different concentration levels of the RMs. 
Proposed model (equation (2)) for the fitting function (black line).  

Fig. 2 XRF accuracy was measured comparing the reference value to the corrected values of Br (wt. %) 
measured at the infinite thickness. Error bars for the measured concentrations are the SD between the 3 
replicates done for each measure at infinite thickness; error bars for the reference concentration are 
uncertainty of the NAA used to validate the RMs. Concentrations reported without correction show 
negative errors for RM 1-3 and positive errors for RM 4-9: this effect is a direct result of Compton 
scattering, the Compton scatter intensity increases with the decreasing of the average atomic number of 
the scattering material, when the Br (Z=80) amount relative to the C in  the matrix (Z=12) decreases 
under a certain threshold the MAC of the material decreased, and the Compton scattering has a more 
prominent effect . Being this an effect of varying MAC, it is as well accounted for in the thickness 
correction. 

Fig. 3 Comparison between LA-ICP-MS measured values and thickness corrected XRF measured values. 
On the bottom the corresponding thickness for each sample. Inset plot: correlation between LA-ICP-MS 
results and XRF. The thickness corrected results (blue dots) show a better correlation (R2=0.9926 for 28 
samples) compared to the correlation ((R2=0.8788 for 28 samples) of the non-corrected XRF results (red 
dots). The circled red dot (in the inset) shows a bigger deviation from the LA-ICP-MS results: this is in 
fact a very thin sample (0.69 mm) circled thickness bar, hence when the thickness correction is not 
applied the negative error is substantially bigger. 

 

Supporting Information 

Fig. 1 Effect of thickness on the measured concentration by XRF. All the RMs were measured at different 
thicknesses, the measured concentration deviates more from the reference for thinner samples. 

Fig. 2 a) Effect of high fluence (3.2 J/cm2) on the ICP-MS signal fluctuations using an ABS reference 
material (0.8 wt.% Br). 

b) Effect of low fluence (0.45 J/cm2) on the ICP-MS signal fluctuations using an ABS reference material 
(0.8 wt. %Br). 

Fig. 3 Effect of increasing repetition rate on LA-ICP-MS signal intensity (normalized) for RM loaded with 
0.8 wt. % Br in  a line scan at 50 µm∙s-1. Spot size was 150 µm, laser energy was 0.45 J/cm2. Error bars are 
the RSDs on the time signal (normalized).   

Fig. 4 Number of shots vs. crater depth with LA-ICP-MS. The circles are the values of shots for which the 
crater depth increases linearly. The linear equation shown in the graphs was used to extrapolate the 
ablation rate. 

Figure captions



Fig.  5 Calibration line on the low concentration range (0.08-0.8 wt.% Br)  blue marker and on the high 
concentration range (1.6-12 wt. % Br)  black marker done with LA-ICP-MS. 

Fig. 6 Comparison for each RM between the measured value (LA-ICP-MS)  and the reference. Error bars 
for the RMs values is the RSD of the LA-ICP-MS used to measure the Br concentration in the RMs by 
FMLIA; error bars for the measured concentration is the RSD of the individual ablations. 


