95 research outputs found

    Clinical characterization of 66 patients with congenital retinal disease due to the deep-intronic c.2991+1655A>G mutation in CEP290

    Get PDF
    Purpose: To describe the phenotypic spectrum of retinal disease caused by the c.2991+1655A>G mutation in CEP290 and to compare disease severity between homozygous and compound heterozygous patients. Methods: Medical records were reviewed for best-corrected visual acuity (BCVA), age of onset, fundoscopy descriptions. Foveal outer nuclear layer (ONL) and ellipsoid zone (EZ) presence was assessed using spectral-domain optical coherence tomography (SD-OCT). Differences between compound heterozygous and homozygous patients were analyzed based on visual performance and visual development. Results: A total of 66 patients were included. The majority of patients had either light perception or no light perception. In the remaining group of 14 patients, median BCVA was 20/195 Snellen (0.99 LogMAR; range 0.12-1.90) for the right eye, and 20/148 Snellen (0.87 LogMAR; range 0.22-1.90) for the left. Homozygous patients tended to be more likely to develop light perception compared to more severely affected compound heterozygous patients (P = 0.080) and are more likely to improve from no light perception to light perception (P = 0.022) before the age of 6 years. OCT data were available in 12 patients, 11 of whom had retained foveal ONL and EZ integrity up to 48 years (median 23 years) of age. Conclusions: Homozygous patients seem less severely affected compared to their compound-heterozygous peers. Improvement of visual function may occur in the early years of life, suggesting a time window for therapeutic intervention up to the approximate age of 17 years. This period may be extended by an intact foveal ONL and EZ on OCT

    An optimized derivative of an endogenous CXCR4 antagonist prevents atopic dermatitis and airway inflammation

    Get PDF
    Aberrant CXCR4/CXCL12 signaling is involved in many pathophysiological processes such as cancer and inflammatory diseases. A natural fragment of serum albumin, named EPI-X4, has previously been identified as endogenous peptide antagonist and inverse agonist of CXCR4 and is a promising compound for the development of improved analogues for the therapy of CXCR4-associated diseases. To generate optimized EPI-X4 derivatives we here performed molecular docking analysis to identify key interaction motifs of EPI-X4/CXCR4. Subsequent rational drug design allowed to increase the anti-CXCR4 activity of EPI-X4. The EPI-X4 derivative JM#21 bound CXCR4 and suppressed CXCR4-tropic HIV-1 infection more efficiently than the clinically approved small molecule CXCR4 antagonist AMD3100. EPI-X4 JM#21 did not exert toxic effects in zebrafish embryos and suppressed allergen-induced infiltration of eosinophils and other immune cells into the airways of animals in an asthma mouse model. Moreover, topical administration of the optimized EPI-X4 derivative efficiently prevented inflammation of the skin in a mouse model of atopic dermatitis. Thus, rationally designed EPI-X4 JM#21 is a novel potent antagonist of CXCR4 and the first CXCR4 inhibitor with therapeutic efficacy in atopic dermatitis. Further clinical development of this new class of CXCR4 antagonists for the therapy of atopic dermatitis, asthma and other CXCR4-associated diseases is highly warranted

    Modeling, optimizing and simulating robot calibration with accuracy improvement

    Get PDF
    This work describes techniques for modeling, optimizing and simulating calibration processes ofrobots using off-line programming. The identification of geometric parameters of the nominalkinematic model is optimized using techniques of numerical optimization of the mathematicalmodel. The simulation of the actual robot and the measurement system is achieved by introducingrandom errors representing their physical behavior and its statistical repeatability. An evaluationof the corrected nominal kinematic model brings about a clear perception of the influence ofdistinct variables involved in the process for a suitable planning, and indicates a considerableaccuracy improvement when the optimized model is compared to the non-optimized one

    Clinical characterization of 66 patients with congenital retinal disease due to the deep-intronic c.2991+1655A>G mutation in CEP290

    Get PDF
    PURPOSE. To describe the phenotypic spectrum of retinal disease caused by the c.2991+1655A>G mutation in CEP290 and to compare disease severity between homozygous and compound heterozygous patients. METHODS. Medical records were reviewed for best-corrected visual acuity (BCVA), age of onset, fundoscopy descriptions. Foveal outer nuclear layer (ONL) and ellipsoid zone (EZ) presence was assessed using spectral-domain optical coherence tomography (SD-OCT). Differences between compound heterozygous and homozygous patients were analyzed based on visual performance and visual development. RESULTS. A total of 66 patients were included. The majority of patients had either light perception or no light perception. In the remaining group of 14 patients, median BCVA was 20/195 Snellen (0.99 LogMAR; range 0.12–1.90) for the right eye, and 20/148 Snellen (0.87 LogMAR; range 0.22–1.90) for the left. Homozygous patients tended to be more likely to develop light perception compared to more severely affected compound heterozygous patients (P = 0.080) and are more likely to improve from no light perception to light perception (P = 0.022) before the age of 6 years. OCT data were available in 12 patients, 11 of whom had retained foveal ONL and EZ integrity up to 48 years (median 23 years) of age. CONCLUSIONS. Homozygous patients seem less severely affected compared to their compound-heterozygous peers. Improvement of visual function may occur in the early years of life, suggesting a time window for therapeutic intervention up to the approximate age of 17 years. This period may be extended by an intact foveal ONL and EZ on OCT

    Segregation Analysis in Inherited Eye Disorders: An Academic Add-on or An Essential Effort?

    No full text
    The knowledge of the genetic basis of many eye diseases is constantly increasing. Besides retinal degeneration, developmental defects of the anterior segment, cataracts, and the development of the basic structure are often associated with genetic defects. Moreover, a lot of genetic syndromes involve eye abnormalities. The impact of genetics has become more and more evident in ophthalmological practice. Although genetic counselling is usually carried out by human geneticists, the increasing availability of therapeutic options requires ophthalmologists to have some basic knowledge of the genetic causes and how to identify them. The first step in this regard is to recognise potential genetic eye disorders and to initiate an adequate genetic analysis to confirm the diagnosis. This review discusses possible and necessary investigations within the patient's family facing ophthalmologists after the genetic cause of an eye disease has been identified
    • …
    corecore