297 research outputs found

    T. brucei cathepsin-L increases arrhythmogenic sarcoplasmic reticulum-mediated calcium release in rat cardiomyocytes

    Get PDF
    Aims: African trypanosomiasis, caused by Trypanosoma brucei species, leads to both neurological and cardiac dysfunction and can be fatal if untreated. While the neurological-related pathogenesis is well studied, the cardiac pathogenesis remains unknown. The current study exposed isolated ventricular cardiomyocytes and adult rat hearts to T. brucei to test whether trypanosomes can alter cardiac function independent of a systemic inflammatory/immune response. Methods and results: Using confocal imaging, T. brucei and T. brucei culture media (supernatant) caused an increased frequency of arrhythmogenic spontaneous diastolic sarcoplasmic reticulum (SR)-mediated Ca2+ release (Ca2+ waves) in isolated adult rat ventricular cardiomyocytes. Studies utilising inhibitors, recombinant protein and RNAi all demonstrated that this altered SR function was due to T. brucei cathepsin-L (TbCatL). Separate experiments revealed that TbCatL induced a 10–15% increase of SERCA activity but reduced SR Ca2+ content, suggesting a concomitant increased SR-mediated Ca2+ leak. This conclusion was supported by data demonstrating that TbCatL increased Ca2+ wave frequency. These effects were abolished by autocamtide-2-related inhibitory peptide, highlighting a role for CaMKII in the TbCatL action on SR function. Isolated Langendorff perfused whole heart experiments confirmed that supernatant caused an increased number of arrhythmic events. Conclusion: These data demonstrate for the first time that African trypanosomes alter cardiac function independent of a systemic immune response, via a mechanism involving extracellular cathepsin-L-mediated changes in SR function

    The Effect of FRAND Commitments on Patent Remedies

    Get PDF
    This chapter addresses a special category of cases in which an asserted patent is, or has been declared to be, essential to the implementation of a collaboratively-developed voluntary consensus standard, and the holder of that patent has agreed to license it to implementers of the standard on terms that are fair, reasonable and non-discriminatory (FRAND). In this chapter, we explore how the existence of such a FRAND commitment may affect a patent holder’s entitlement to monetary damages and injunctive relief. In addition to issues of patent law, remedies law and contract law, we consider the effect of competition law on this issue

    Control of Goos-Hanchen shift of a light beam via a coherent driving field

    Full text link
    We present a proposal to manipulate the Goos-Hanchen shift of a light beam via a coherent control field, which is injected into a cavity configuration containing the two-level atomic medium. It is found that the lateral shifts of the reflected and transmitted probe beams can be easily controlled by adjusting the intensity and detuning of the control field. Using this scheme, the lateral shift at the fixed incident angle can be enhanced (positive or negative) under the suitable conditions on the control field, without changing the structure of the cavity.Comment: 12 pages, 5 figure

    TGF-beta(2)- and H2O2-Induced Biological Changes in Optic Nerve Head Astrocytes Are Reduced by the Antioxidant Alpha-Lipoic Acid

    Get PDF
    Background/Aims: The goal of the present study was to determine whether transforming growth factor-beta(2) (TGF-beta(2))- and oxidative stress-induced cellular changes in cultured human optic nerve head (ONH) astrocytes could be reduced by pretreatment with the antioxidant alpha-lipoic acid (LA). Methods: Cultured ONH astrocytes were treated with 1.0 ng/ml TGF-beta(2) for 24 h or 200 mu M hydrogen peroxide (H2O2) for 1 h. Lipid peroxidation was measured by a decrease in cis-pari-naric acid fluorescence. Additionally, cells were pretreated with different concentrations of LA before TGF-beta 2 or H2O2 exposure. Expressions of the heat shock protein (Hsp) alpha B-crystallin and Hsp27, the extracellular matrix (ECM) component fibronectin and the ECM-modulating protein connective tissue growth factor (CTGF) were examined with immunohistochemistry and real-time PCR analysis. Results: Both TGF-beta(2) and H2O2 increased lipid peroxidation. Treatment of astrocytes with TGF-beta(2) and H2O2 upregulated the expression of alpha B-crystallin, Hsp27, fibronectin and CTGF. Pretreatment with different concentrations of LA reduced the TGF-beta(2)- and H2O2-stimulated gene expressions. Conclusion: We showed that TGF-beta(2)- and H2O2-stimulated gene expressions could be prevented by pretreatment with the antioxidant LA in cultured human ONH astrocytes. Therefore, it is tempting to speculate that the use of antioxidants could have protective effects in glaucomatous optic neuropathy. Copyright (C) 2012 S. Karger AG, Base

    Study on the clinical application of pulsed DC magnetic technology for tracking of intraoperative head motion during frameless stereotaxy

    Get PDF
    BACKGROUND: Tracking of post-registration head motion is one of the major problems in frameless stereotaxy. Various attempts in detecting and compensating for this phenomenon rely on a fixed reference device rigidly attached to the patient's head. However, most of such reference tools are either based on an invasive fixation technique or have physical limitations which allow mobility of the head only in a restricted range of motion after completion of the registration procedure. METHODS: A new sensor-based reference tool, the so-called Dynamic Reference Frame (DRF) which is designed to allow an unrestricted, 360° range of motion for the intraoperative use in pulsed DC magnetic navigation was tested in 40 patients. Different methods of non-invasive attachment dependent on the clinical need and type of procedure, as well as the resulting accuracies in the clinical application have been analyzed. RESULTS: Apart from conventional, completely rigid immobilization of the head (type A), four additional modes of head fixation and attachment of the DRF were distinguished on clinical grounds: type B1 = pin fixation plus oral DRF attachment; type B2 = pin fixation plus retroauricular DRF attachment; type C1 = free head positioning with oral DRF; and type C2 = free head positioning with retroauricular DRF. Mean fiducial registration errors (FRE) were as follows: type A interventions = 1.51 mm, B1 = 1.56 mm, B2 = 1.54 mm, C1 = 1.73 mm, and C2 = 1.75 mm. The mean position errors determined at the end of the intervention as a measure of application accuracy were: 1.45 mm in type A interventions, 1.26 mm in type B1, 1.44 mm in type B2, 1.86 mm in type C1, and 1.68 mm in type C2. CONCLUSION: Rigid head immobilization guarantees most reliable accuracy in various types of frameless stereotaxy. The use of an additional DRF, however, increases the application scope of frameless stereotaxy to include e.g. procedures in which rigid pin fixation of the cranium is not required or desired. Thus, continuous tracking of head motion allows highly flexible variation of the surgical strategy including intraoperative repositioning of the patient without impairment of navigational accuracy as it ensures automatic correction of spatial distortion. With a dental cast for oral attachment and the alternative option of non-invasive retroauricular attachment, flexibility in the clinical use of the DRF is ensured

    Biodegradable collagen matrix implant vs mitomycin-C as an adjuvant in trabeculectomy: a 24-month, randomized clinical trial

    Get PDF
    AIM: To verify the safety and efficacy of Ologen (OLO) implant as adjuvant compared with low-dosage mitomycin-C (MMC) in trabeculectomy. METHODS: This was a prospective randomized clinical trial with a 24-month follow-up. Forty glaucoma patients (40 eyes) were assigned to trabeculectomy with MMC or OLO. Primary outcome includes target IOP at ≤21, ≤17, and ≤15 mm Hg; complete (target IOP without medications), and qualified success (target IOP regardless of medications). Secondary outcomes include bleb evaluation, according to Moorfields Bleb Grading System (MBGS); spectral domain optical coherence tomography (SD-OCT) examination; number of glaucoma medications; and frequency of postoperative adjunctive procedures and complications. RESULTS: The mean preoperative IOP was 26.5 (±5.2) in MMC and 27.3 (±6.0) in OLO eyes, without statistical significance. One-day postoperatively, the IOP dropped to 5.2 (±3.5) and 9.2 (±5.5) mm Hg, respectively (P=0.009). The IOP reduction was significant at end point in all groups (P=0.01), with a mean IOP of 16.0 (±2.9) and 16.5 (±2.1) mm Hg in MMC and OLO, respectively. The rates and Kaplan-Meier curves did not differ for both complete and qualified success at any target IOP. The bleb height in OLO group was higher than MMC one (P<0.05). SD-OCT analysis of successful/unsuccessful bleb in patients with or without complete success at IOP ≤17  mm Hg indicated a sensitivity of 83% and 73% and a specificity of 75% and 67%, respectively, for MMC and OLO groups. No adverse reaction to OLO was noted. CONCLUSIONS: Our results suggest that OLO implant could be a new, safe, and effective alternative to MMC, with similar long-term success rate

    Examination of the Effects of Heterogeneous Organization of RyR Clusters, Myofibrils and Mitochondria on Ca2+ Release Patterns in Cardiomyocytes

    Get PDF
    Spatio-temporal dynamics of intracellular calcium, [Ca2+]i, regulate the contractile function of cardiac muscle cells. Measuring [Ca2+]i flux is central to the study of mechanisms that underlie both normal cardiac function and calcium-dependent etiologies in heart disease. However, current imaging techniques are limited in the spatial resolution to which changes in [Ca2+]i can be detected. Using spatial point process statistics techniques we developed a novel method to simulate the spatial distribution of RyR clusters, which act as the major mediators of contractile Ca2+ release, upon a physiologically-realistic cellular landscape composed of tightly-packed mitochondria and myofibrils.We applied this method to computationally combine confocal-scale (~ 200 nm) data of RyR clusters with 3D electron microscopy data (~ 30 nm) of myofibrils and mitochondria, both collected from adult rat left ventricular myocytes. Using this hybrid-scale spatial model, we simulated reaction-diffusion of [Ca2+]i during the rising phase of the transient (first 30 ms after initiation). At 30 ms, the average peak of the simulated [Ca2+]i transient and of the simulated fluorescence intensity signal, F/F0, reached values similar to that found in the literature ([Ca2+]i 1 μM; F/F0 5.5). However, our model predicted the variation in [Ca2+]i to be between 0.3 and 12.7 μM (~3 to 100 fold from resting value of 0.1 μM) and the corresponding F/F0 signal ranging from 3 to 9.5. We demonstrate in this study that: (i) heterogeneities in the [Ca2+]i transient are due not only to heterogeneous distribution and clustering of mitochondria; (ii) but also to heterogeneous local densities of RyR clusters. Further, we show that: (iii) these structureinduced heterogeneities in [Ca2+]i can appear in line scan data. Finally, using our unique method for generating RyR cluster distributions, we demonstrate the robustness in the [Ca2+]i transient to differences in RyR cluster distributions measured between rat and human cardiomyocytes
    • …
    corecore