701 research outputs found

    On the filamentary environment of galaxies

    Full text link
    The correlation between the large-scale distribution of galaxies and their spectroscopic properties at z=1.5 is investigated using the Horizon MareNostrum cosmological run. We have extracted a large sample of 10^5 galaxies from this large hydrodynamical simulation featuring standard galaxy formation physics. Spectral synthesis is applied to these single stellar populations to generate spectra and colours for all galaxies. We use the skeleton as a tracer of the cosmic web and study how our galaxy catalogue depends on the distance to the skeleton. We show that galaxies closer to the skeleton tend to be redder, but that the effect is mostly due to the proximity of large haloes at the nodes of the skeleton, rather than the filaments themselves. This effects translate into a bimodality in the colour distribution of our sample. The origin of this bimodality is investigated and seems to follow from the ram pressure stripping of satellite galaxies within the more massive clusters of the simulation. The virtual catalogues (spectroscopical properties of the MareNostrum galaxies at various redshifts) are available online at http://www.iap.fr/users/pichon/MareNostrum/cataloguesComment: 18 pages, 27 figures, accepted for publication in MNRA

    Evidence for a meteoritic origin of the September 15, 2007, Carancas crater

    Get PDF
    On September 15th, 2007, around 11:45 local time in Peru, near the Bolivian border, the atmospheric entry of a meteoroid produced bright lights in the sky and intense detonations. Soon after, a crater was discovered south of Lake Titicaca. These events have been detected by the Bolivian seismic network and two infrasound arrays operating for the Comprehensive Nuclear-Test-Ban Treaty Organization, situated at about 80 and 1620 km from the crater. The localization and origin time computed with the seismic records are consistent with the reported impact. The entry elevation and azimuthal angles of the trajectory are estimated from the observed signal time sequences and backazimuths. From the crater diameter and the airwave amplitudes, the kinetic energy, mass and explosive energy are calculated. Using the estimated velocity of the meteoroid and similarity criteria between orbital elements, an association with possible parent asteroids is attempted. The favorable setting of this event provides a unique opportunity to evaluate physical and kinematic parameters of the object that generated the first actual terrestrial meteorite impact seismically recorded

    Galaxy merger histories and the role of merging in driving star formation at z>1

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. © 2015 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.We use Horizon-AGN, a hydrodynamical cosmological simulation, to explore the role of mergers in the evolution of massive (M > 10^10 MSun) galaxies around the epoch of peak cosmic star formation (1zR(4:1 3 are 'blue' (i.e. have significant associated star formation), the proportion of 'red' mergers increases rapidly at ztodays stellar mass was formed.Peer reviewe

    Long range infrasound monitoring of Etna volcano

    Get PDF

    Yield scaling, size hierarchy and fluctuations of observables in fragmentation of excited heavy nuclei

    Get PDF
    Multifragmentation properties measured with INDRA are studied for single sources produced in Xe+Sn reactions in the incident energy range 32-50 A MeV and quasiprojectiles from Au+Au collisions at 80 A MeV. A comparison for both types of sources is presented concerning Fisher scaling, Zipf law, fragment size and fluctuation observables. A Fisher scaling is observed for all the data. The pseudo-critical energies extracted from the Fisher scaling are consistent between Xe+Sn central collisions and Au quasi-projectiles. In the latter case it also corresponds to the energy region at which fluctuations are maximal. The critical energies deduced from the Zipf analysis are higher than those from the Fisher analysis.Comment: 30 pages, accepted for publication in Nuclear Physics A, references correcte

    Comparison of laboratory and in situ compressional-wave velocity measurements on sediment cores from the western North Atlantic

    Get PDF
    Author Posting. © American Geophysical Union, 1979. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 84, no. B2 (1979): 687–695, doi:10.1029/JB084iB02p00687.Laboratory and in situ velocity measurements have been made on six piston cores taken in the western North Atlantic Ocean. Sediments from the southwestern Bermuda Rise and Greater Antilles Outer Ridge are clays having velocities ranging mostly from 1500 to 1530 m/s and velocity gradients near 1 s−1. In cores from the Nares Abyssal Plain, the clayey sediments have comparable velocities, but interbedded silty turbidites exhibit much higher values (up to 1690 m/s). Velocity gradients are slightly higher in the abyssal-plain cores. After the laboratory measurements are corrected to in situ conditions, they show reasonable agreement in average velocity and velocity gradient with in situ measurements, although the in situ velocities average 10–12 m/s higher in the clayey cores and 15–20 m/s higher in the turbidites. This difference may be caused by reduction in the dynamic frame bulk modulus and/or the dynamic shear modulus due to visually undetected coring disturbance. The profilometer used to obtain the in situ measurements does not record the fine-scale variations in velocity that were measured in the laboratory, but it accurately determines average velocities and velocity gradient. Where cores were closely spaced (2–12 km apart), inter-core correlations in lithology, velocity, and bulk properties are possible. Fluctuations in the latter two parameters are very similar in position and magnitude from core to core, suggesting either that effects of coring disturbance are small or that they are uniform in a given kind of sedimentary bed. Inter-core comparison also shows that some beds are laterally discontinuous as a result of local (less than a few kilometers) patterns of seafloor erosion and deposition.At Lamont-Doherty Geological Observatory the study of acoustic and physical properties of sea-floor sediments is supported by the Office of Naval Research under contract N00014-75-C-0210, and at Applied Research Laboratories, University of Texas, by ONR contract N00014-76-C-0117

    Liquid-gas phase transition in hot nuclei studied with INDRA

    Full text link
    Thanks to the high detection quality of the INDRA array, signatures related to the dynamics (spinodal decomposition) and thermodynamics (negative microcanonical heat capacity) of a liquid-gas phase transition have been simultaneously studied in multifragmentation events in the Fermi energy domain. The correlation between both types of signals strongly supports the existence of a first order phase transition for hot nuclei.Comment: 9 pages, 2 figures, Invited talk to Nucleus-nucleus 2003 Moscow June 200

    Using dense seismo-acoustic network to provide timely warning of the 2019 paroxysmal Stromboli eruptions

    Get PDF
    Stromboli Volcano is well known for its persistent explosive activity. On July 3rd and August 28th 2019, two paroxysmal explosions occurred, generating an eruptive column that quickly rose up to 5 km above sea level. Both events were detected by advanced local monitoring networks operated by Istituto Nazionale di Geofisica e Vulcanologia (INGV) and Laboratorio di Geofisica Sperimentale of the University of Firenze (LGS-UNIFI). Signals were also recorded by the Italian national seismic network at a range of hundreds of kilometres and by infrasonic arrays up to distances of 3700 km. Using state-of-the-art propagation modeling, we identify the various seismic and infrasound phases that are used for precise timing of the eruptions. We highlight the advantage of dense regional seismo-acoustic networks to enhance volcanic signal detection in poorly monitored regions, to provide timely warning of eruptions and reliable source amplitude estimate to Volcanic Ash Advisory Centres (VAAC)
    • 

    corecore