109 research outputs found
Unravelling body plan and axial evolution in the Bilateria with molecular phylogenetic markers
SETTING THE PROBLEM The emergence of dramatic morphological differences (disparity) and the ensuing bewildering increase in the number of species (diversity) documented in the fossil record at key stages of animal and plant evolution have defied, and still defy, the explanatory powers of Darwin’s theory of evolution by natural selection. Among the best examples that have captured the imagination of the layman and the interest of scores of scientists for 150 years are the origins of land plants from aquatic green plants, of flowering plants from seed plants, of chordates from non-chordates and of tetrapod vertebrates from non-tetrapods; and the conquest of the land by amphibians; the emergence of endotherms from ectotherm animals; the recurrent invention of flight (e.g. in arthropods, birds and mammals) from non-flying ancestors; and the origin of aquatic mammals from four-legged terrestrial ancestors. Key morphological transitions pose a basic difficulty: reconstruction of ancestral traits of derived clades is problematic because of a lack of transitional forms in the fossil record and obscure homologies between ‘ancestral’ and derived groups. Lack of transitional forms, in other words gaps in the fossil record, brought into question one of the basic tenets of Darwin’s theory, namely gradualism, as Darwin himself acknowledged. Since Darwin, however, and especially in the past 50 years, numerous examples that may reflect transitional stages between major groups of organisms have accumulated
Acoelomorpha: earliest branching bilaterians or deuterostomes?
The Acoelomorpha is an animal group comprised by nearly 400 species of misleadingly inconspicuous flatworms. Despite this, acoelomorphs have been at the centre of a heated debate about the origin of bilaterian animals for 150 years. The animal tree of life has undergone major changes during the last decades, thanks largely to the advent of molecular data together with the development of more rigorous phylogenetic methods. There is now a relatively robust backbone of the animal tree of life. However, some crucial nodes remain contentious, especially the node defining the root of Bilateria. Some studies situate Acoelomorpha (and Xenoturbellida) as the sister group of all other bilaterians, while other analyses group them within the deuterostomes which instead suggests that the last common bilaterian ancestor directly gave rise to deuterostomes and protostomes. The resolution of this node will have a profound impact on our understanding of animal/bilaterian evolution. In particular, if acoelomorphs are the sister group to Bilateria, it will point to a simple nature for the first bilaterian. Alternatively, if acoelomorphs are deuterostomes, this will imply that they are the result of secondary simplification. Here, we review the state of this question and provide potential ways to solve this long-standing issue. Specifically, we argue for the benefits of (1) obtaining additional genomic data from acoelomorphs, in particular from taxa with slower evolutionary rates; (2) the development of new tools to analyse the data; and (3) the use of metagenomics or metatranscriptomics data. We believe the combination of these three approaches will provide a definitive answer as to the position of the acoelomorphs in the animal tree of life
Expression of Distal-less, dachshund, and optomotor blind in Neanthes arenaceodentata (Annelida, Nereididae) does not support homology of appendage-forming mechanisms across the Bilateria
The similarity in the genetic regulation of
arthropod and vertebrate appendage formation has been
interpreted as the product of a plesiomorphic gene
network that was primitively involved in bilaterian
appendage development and co-opted to build appendages
(in modern phyla) that are not historically related
as structures. Data from lophotrochozoans are needed to
clarify the pervasiveness of plesiomorphic appendage forming
mechanisms. We assayed the expression of three
arthropod and vertebrate limb gene orthologs, Distal-less
(Dll), dachshund (dac), and optomotor blind (omb), in
direct-developing juveniles of the polychaete Neanthes
arenaceodentata. Parapodial Dll expression marks premorphogenetic
notopodia and neuropodia, becoming restricted
to the bases of notopodial cirri and to ventral
portions of neuropodia. In outgrowing cephalic appendages,
Dll activity is primarily restricted to proximal
domains. Dll expression is also prominent in the brain. dac
expression occurs in the brain, nerve cord ganglia, a pair
of pharyngeal ganglia, presumed interneurons linking a
pair of segmental nerves, and in newly differentiating
mesoderm. Domains of omb expression include the brain,
nerve cord ganglia, one pair of anterior cirri, presumed
precursors of dorsal musculature, and the same pharyngeal
ganglia and presumed interneurons that express dac.
Contrary to their roles in outgrowing arthropod and
vertebrate appendages, Dll, dac, and omb lack comparable
expression in Neanthes appendages, implying independent
evolution of annelid appendage development. We infer
that parapodia and arthropodia are not structurally or
mechanistically homologous (but their primordia might
be), that Dll’s ancestral bilaterian function was in sensory
and central nervous system differentiation, and that
locomotory appendages possibly evolved from sensory
outgrowths
The evolutionary emergence of land plants
There can be no doubt that early land plant evolution transformed the planet but until recently, how and when this was achieved has been unclear. Coincidence in the first appearance of land plant fossils and formative shifts in atmospheric oxygen and CO2 are an artefact of the paucity of earlier terrestrial rocks. Disentangling the timing of land plant body plan assembly and its impact on global biogeochemical cycles has been precluded by uncertainty concerning the relationships of bryophytes to one another and to the tracheophytes, as well as the timescale over which these events unfolded. New genome and transcriptome sequencing projects, combined with the application of sophisticated phylogenomic modelling methods, have yielded increasing support for the Setaphyta clade of liverworts and mosses, within monophyletic bryophytes. We consider the evolution of anatomy, genes, genomes and of development within this phylogenetic context, concluding that many vascular plant (tracheophytes) novelties were already present in a comparatively complex last common ancestor of living land plants (embryophytes). Molecular clock analyses indicate that embryophytes emerged in a mid-Cambrian to early Ordovician interval, compatible with hypotheses on their role as geoengineers, precipitating early Palaeozoic glaciations
A six-gene phylogeny provides new insights into choanoflagellate evolution
Recent studies have shown that molecular phylogenies of the choanoflagellates (Class Choanoflagellatea)
are in disagreement with their traditional taxonomy, based on morphology, and that Choanoflagellatea
requires considerable taxonomic revision. Furthermore, phylogenies suggest that the morphological
and ecological evolution of the group is more complex than has previously been recognized. Here we
address the taxonomy of the major choanoflagellate order Craspedida, by erecting four new genera.
The new genera are shown to be morphologically, ecologically and phylogenetically distinct from other
choanoflagellate taxa. Furthermore, we name five novel craspedid species, as well as formally describe
ten species that have been shown to be either misidentified or require taxonomic revision. Our revised
phylogeny, including 18 new species and sequence data for two additional genes, provides insights into
the morphological and ecological evolution of the choanoflagellates. We examine the distribution within
choanoflagellates of these two additional genes, EF-1A and EFL, closely related translation GTPases which
are required for protein synthesis. Mapping the presence and absenc
Phylogenetic Relationships within the Opisthokonta Based on Phylogenomic Analyses of Conserved Single-Copy Protein Domains
Many of the eukaryotic phylogenomic analyses published to date were based on alignments of hundreds to thousands of genes. Frequently, in such analyses, the most realistic evolutionary models currently available are often used to minimize the impact of systematic error. However, controversy remains over whether or not idiosyncratic gene family dynamics (i.e., gene duplications and losses) and incorrect orthology assignments are always appropriately taken into account. In this paper, we present an innovative strategy for overcoming orthology assignment problems. Rather than identifying and eliminating genes with paralogy problems, we have constructed a data set comprised exclusively of conserved single-copy protein domains that, unlike most of the commonly used phylogenomic data sets, should be less confounded by orthology miss-assignments. To evaluate the power of this approach, we performed maximum likelihood and Bayesian analyses to infer the evolutionary relationships within the opisthokonts (which includes Metazoa, Fungi, and related unicellular lineages). We used this approach to test 1) whether Filasterea and Ichthyosporea form a clade, 2) the interrelationships of early-branching metazoans, and 3) the relationships among early-branching fungi. We also assessed the impact of some methods that are known to minimize systematic error, including reducing the distance between the outgroup and ingroup taxa or using the CAT evolutionary model. Overall, our analyses support the Filozoa hypothesis in which Ichthyosporea are the first holozoan lineage to emerge followed by Filasterea, Choanoflagellata, and Metazoa. Blastocladiomycota appears as a lineage separate from Chytridiomycota, although this result is not strongly supported. These results represent independent tests of previous phylogenetic hypotheses, highlighting the importance of sophisticated approaches for orthology assignment in phylogenomic analyses. © The Author 2011. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved
Genome-wide linkage study of atopic dermatitis in West Highland White Terriers
<p>Abstract</p> <p>Background</p> <p>Canine atopic dermatitis (AD) is a common, heritable, chronic allergic skin condition prevalent in the West Highland White Terrier (WHWT). In canine AD, environmental allergens trigger an inflammatory response causing visible skin lesions and chronic pruritus that can lead to secondary bacterial and yeast infections. The disorder shares many of the clinical and histopathological characteristics of human AD and represents an animal model of this disorder that could be used to further elucidate genetic causes of human AD. Microsatellite markers genotyped in families of WHWTs affected with AD were used to perform a genome-wide linkage study in order to isolate chromosomal regions associated with the disorder.</p> <p>Results</p> <p>Blood samples and health questionnaires were collected from 108 WHWTs spanning three families. A linkage simulation using these 108 dogs showed high power to detect a highly penetrant mutation. Ninety WHWTs were genotyped using markers from the Minimal Screening Set 2 (MSS-2). Two hundred and fifty six markers were informative and were used for linkage analysis. Using a LOD score of 2.7 as a significance threshold, no chromosomal regions were identified with significant linkage to AD. LOD scores greater than 1.0 were located in a 56 cM region of chromosome 7.</p> <p>Conclusions</p> <p>The study was unable to detect any chromosomal regions significantly linked to canine AD. This could be a result of factors such as environmental modification of phenotype, incorrect assignment of phenotype, a mutation of low penetrance, or incomplete genome coverage. A genome-wide SNP association study in a larger cohort of WHWTs may prove more successful by providing higher density coverage and higher statistical power.</p
Periostin Activation of Integrin Receptors on Sensory Neurons Induces Allergic Itch
Chronic allergic itch is a common symptom affecting millions of people and animals, but its pathogenesis is not fully explained. Herein, we show that periostin, abundantly expressed in the skin of patients with atopic dermatitis (AD), induces itch in mice, dogs, and monkeys. We identify the integrin αVβ3 expressed on a subset of sensory neurons as the periostin receptor. Using pharmacological and genetic approaches, we inhibited the function of neuronal integrin αVβ3, which significantly reduces periostin-induced itch in mice. Furthermore, we show that the cytokine TSLP, the application of AD-causing MC903 (calcipotriol), and house dust mites all induce periostin secretion. Finally, we establish that the JAK/STAT pathway is a key regulator of periostin secretion in keratinocytes. Altogether, our results identify a TSLP-periostin reciprocal activation loop that links the skin to the spinal cord via peripheral sensory neurons, and we characterize the non-canonical functional role of an integrin in itch
- …
