534 research outputs found

    Historical Highlights in Indiana Soil Science

    Get PDF

    Storage oil hydrolysis during early seedling growth

    Get PDF
    Storage oil breakdown plays an important role in the life cycle of many plants by providing the carbon skeletons that support seedling growth immediately following germination. This metabolic process is initiated by lipases (EC: 3.1.1.3), which catalyze the hydrolysis of triacylglycerols (TAGs) to release free fatty acids and glycerol. A number of lipases have been purified to near homogeneity from seed tissues and analysed for their in vitro activities. Furthermore, several genes encoding lipases have been cloned and characterised from plants. However, only recently has data been presented to establish the molecular identity of a lipase that has been shown to be required for TAG breakdown in seeds. In this review we briefly outline the processes of TAG synthesis and breakdown. We then discuss some of the biochemical literature on seed lipases and describe the cloning and characterisation of a lipase called SUGAR-DEPENDENT1, which is required for TAG breakdown in Arabidopsis thaliana seeds

    Subcellular localization of acyl carrier protein in leaf protoplasts of Spinacia oleracea.

    Full text link

    Phylogenetic profiling of the Arabidopsis thaliana proteome: what proteins distinguish plants from other organisms?

    Get PDF
    BACKGROUND: The availability of the complete genome sequence of Arabidopsis thaliana together with those of other organisms provides an opportunity to decipher the genetic factors that define plant form and function. To begin this task, we have classified the nuclear protein-coding genes of Arabidopsis thaliana on the basis of their pattern of sequence similarity to organisms across the three domains of life. RESULTS: We identified 3,848 Arabidopsis proteins that are likely to be found solely within the plant lineage. More than half of these plant-specific proteins are of unknown function, emphasizing the general lack of knowledge of processes unique to plants. Plant-specific proteins that are membrane-associated and/or targeted to the mitochondria or chloroplasts are the most poorly characterized. Analyses of microarray data indicate that genes coding for plant-specific proteins, but not evolutionarily conserved proteins, are more likely to be expressed in an organ-specific manner. A large proportion (13%) of plant-specific proteins are transcription factors, whereas other basic cellular processes are under-represented, suggesting that evolution of plant-specific control of gene expression contributed to making plants different from other eukaryotes. CONCLUSIONS: We identified and characterized the Arabidopsis proteins that are most likely to be plant-specific. Our results provide a genome-wide assessment that supports the hypothesis that evolution of higher plant complexity and diversity is related to the evolution of regulatory mechanisms. Because proteins that are unique to the green plant lineage will not be studied in other model systems, they should be attractive priorities for future studies

    Disruption of the FATB

    Full text link
    corecore