117 research outputs found
Enhanced end-to-end security through symmetric-key cryptography in wearable medical sensor networks
Computer Science
Communication and security trade-offs for battery-powered devices: a case study on wearable medical sensor systems
Computer Science
In-depth energy analysis of security algorithms and protocols for the Internet of Things
Computer Science
Efficient utilization of DSPs and BRAMs revisited : new AES-GCM recipes on FPGAs
In 2008, Drimer et al. proposed different AES implementations on a Xilinx Virtex-5 FPGA, making efficient use of the DSP slices and BRAM tiles available on the device. Inspired by their work, we evaluate the feasibility of extending AES with the popular GCM mode of operation, still concentrating on the optimal use of DSP slices and BRAM tiles. We make use of a Xilinx Zynq UltraScale+ MPSoC FPGA with improved DSP features. For the AES part, we implement Drimer's round-based and unrolled pipelined architectures differently, still using DSPs and BRAMs efficiently based on the AES Tbox approach. On top of AES, we append the GCM mode of operation, where we use DSP slices to support the GCM finite field multiplication. This allows us to implement AES-GCM with a small amount of FFs and LUTs. We propose two implementations: A relatively compact round-based design and a faster unrolled design
Evidence for position effects as a variant ETV6-mediated leukemogenic mechanism in myeloid leukemias with a t(4;12)(q11-q12;p13) or t(5;12)(q31;p13)
The ETV6 gene (first identified as TEL) is a frequent target of chromosomal translocations in both myeloid and lymphoid leukemias. At present, more than 40 distinct translocations have been cytogenetically described, of which 13 have now also been characterized at the molecular level. These studies revealed the generation of in-frame fusion genes between different domains of ETV6 and partner genes encoding either kinases or transcription factors. However, in a number of cases-including a t(6;12)(q23;p13), the recurrent t(5;12)(q31;p13), and some cases of the t(4;12)(q11-q12;p13) described in this work-functionally significant fusions could not be identified, raising the question as to what leukemogenic mechanism is implicated in these cases. To investigate this, we have evaluated the genomic regions at 4q11-q12 and 5q31, telomeric to the breakpoints of the t(4;12)(q11-q12;p13) and t(5;12)(q31;p13). The homeobox gene GSH2 at 4q11-q12 and the IL-3/CSF2 locus at 5q31 were found to be located close to the respective breakpoints. In addition, GSH2 and IL-3 were found to be ectopically expressed in the leukemic cells, suggesting that expression of GSH2 and IL-3 was deregulated by the translocation. Our results indicate that, besides the generation of fusion transcripts, deregulation of the expression of oncogenes could be a variant leukemogenic mechanism for translocations involving the 5' end of ETV6, especially for those translocations lacking functionally significant fusion transcripts
Fusion of EML1 to ABL1 in T-cell acute lymphoblastic leukemia with cryptic t(9;14)(q34;q32)
The BCR-ABL1 fusion kinase is frequently associated with chronic myeloid leukemia and B-cell acute lymphoblastic leukemia but is rare in T-cell acute lymphoblastic leukemia (T-ALL). We recently identified NUP214-ABL1 as a variant ABL1 fusion gene in 6% of T-ALL patients. Here we describe the identification of another ABL1 fusion, EML1-ABL1, in a T-ALL patient with a cryptic t(9;14)(q34;q32) associated with deletion of CDKN2A (p16) and expression of TLX1 (HOX11). Echinoderm microtubule-associated protein-like 1-Abelson 1 (EML1-ABL1) is a constitutively phosphorylated tyrosine kinase that transforms Ba/F3 cells to growth factor-independent growth through activation of survival and proliferation pathways, including extracellular signal-related kinase 1/2 (Erk1/2), signal transducers and activators of transcription 5 (Stat5), and Lyn kinase. Deletion of the coiled-coil domain of EML1 abrogated the transforming properties of the fusion kinase. EML1-ABL1 and breakpoint cluster region (BCR)-ABL1 were equally sensitive to the tyrosine kinase inhibitor imatinib. These data further demonstrate the involvement of ABL1 fusions in the pathogenesis of T-ALL and identify EML1-ABL1 as a novel therapeutic target of imatinib
Safe Design Suggestions for Vegetated Roofs
Rooftop vegetation is becoming increasingly popular because of its environmental benefits and its ability to earn green-building certification credits. With the exception of one international guideline, there is little mention of worker safety and health in vegetated-roof codes and literature. Observations and field investigations of 19 vegetated roofs in the United States revealed unsafe access for workers and equipment, a lack of fall-protection measures, and other site-specific hazards. Design for safety strategies and the integration of life-cycle safety thinking with green-building credits systems are the preferred methods to reduce risk to workers on vegetated roofs. Design suggestions have been developed to add to the body of knowledge. The findings complement several National Institute for Occupational Safety and Health (NIOSH) construction and prevention through design (PtD) goals and are congruent with NIOSH’s Safe Green Jobs initiative. Organizations that install and maintain vegetated roofs can utilize the findings to understand hazards, take precautions, and incorporate safety into their bids
The published version of this article is available here: 10.1061/(ASCE)CO.1943-7862.0000500Support from the the Virginia Tech Occupational Safety and Health Research Center through the Kevin P. Granata Pilot Program funded by the Institute for Critical Technology and Applied Sciences
Effects of varying organic matter content on the development of green roof vegetation: a six year experiment
Green roofs can potentially be used to tackle a variety of environmental problems, and can be used as development mitigation for the loss of ground-based habitats. Brown (biodiversity) roofs are a type of green roof designed to imitate brownfield habitat, but the best way of engineering these habitats requires more research. We tested the effects of altering organic matter content on the development of vegetation assemblages of experimental brown (biodiversity) roof mesocosms. Three mulch treatments were tested: (1) Sandy loam, where 10mm of sandy loam mulch (about 3% organic matter by dry weight) was added to 100mm of recycled aggregate; (2) Compost, where the mulch also contained some garden compost (about 6% organic matter by dry weight); and (3) No mulch, where no mulch was added. Mesocosms were seeded with a wildflower mix that included some Sedum acre, and vegetation development was investigated over a six-year period. Species richness, assemblage character, number of plants able to seed, and above-ground plant biomass were measured. Drought disturbance was an important control on plant assemblages in all mulch treatments, but there were significant treatment response interactions. The more productive Compost treatment was associated with larger plant coverage and diversity before the occurrence of a sequence of drought disturbances, but was more strongly negatively affected by the disturbances than the two less productive treatments. We suggest that this was due to the over-production of plant biomass in the more productive treatment, which made the plants more vulnerable to the effects of drought disturbance, leading to a kind of 'boom-bust' assemblage dynamic. The 'ideal' amount of added organic matter for these green roof systems was very low, but other types of green roof that have a larger water holding capacity, and/or more drought resistant plant floras, will likely require more organic matter or fertiliser. Nonetheless, nutrient-supported productivity in green roof systems should be kept low in order to avoid boom-bust plant assemblage dynamics. Research into the best way of engineering green roof habitats should take place over a long enough multi-year time period to include the effects of temporally infrequent disturbances
- …