72 research outputs found

    Antifungal Activity of the Human Uterine Cervical Stem Cells Conditioned Medium (hUCESC-CM) Against Candida albicans and Other Medically Relevant Species of Candida

    Get PDF
    Background: Candidiasis is a major cause of human morbidity and mortality. Human uterine cervical stem cells conditioned medium (hUCESC-CM) is obtained from stromal stem cells of the cervical transformation zone, which are in permanent contact with a wide array of potential vaginal pathogens. In previous reports we have found that hUCESC-CM has antitumor and antibacterial potential. Since Candida is the most prevalent yeast in the human vagina, it seems plausible that hUCESC-CM might also show activity against it. Methods: In a preliminary step, to evaluate if hUCESC-CM showed any activity at all on Candida growth, in vitro activities of hUCESC-CM against fluconazole-susceptible reference strains of Candida albicans, Candida glabrata, Candida krusei, and Candida parapsilosis were studied with a microdilution method on RPMI 1640, using the BioScreen C microbiological incubator. Each measurement was repeated five times. The same methodology was used subsequently on fluconazole-susceptible and fluconazole-resistant Candida isolates from blood and vagina of those species corresponding to the reference strains of Candida against which activity had been detected in the previous study. Moreover, two fluconazole-resistant clinical isolates of Candida auris from blood and urine were also included. Findings: In vitro inhibitory activity of hUCESC-CM ranged from 57.5 to 96.6% growth-reduction against fluconazole-susceptible reference strains of Candida albicans, Candida glabrata, and Candida parapsilosis. hUCESC-CM also reduced the growth of all fluconazole-susceptible tested vaginal isolates by more than 50%. For fluconazole-resistant isolates, growth-reduction was higher than 67% for Candida albicans, regardless of its origin (vagina or blood). The isolate of Candida auris from urine with a MIC > 128 μ/ml for fluconazole was also significantly inhibited. However, hUCESC-CM was almost inactive against any of the fluconazole-resistant blood isolates of Candida glabrata, Candida parapsilosis, and Candida auris tested. Interpretation: This is the first report about the growth-inhibiting properties of conditioned medium from human stromal stem cells against different species of Candida. Antifungal activity of stromal stem cells depends on their site of origin, being most effective against Candida species most prevalent at that particular location. If confirmed in further studies, these findings might result in a completely new therapeutic approach against superficial and invasive candidiasisCM-A was a recipient of a grant from Fundación Once (Oportunidad al Talento). EM, CM-A, EE, and GQ have received grant support from Consejería de Educación, Universidades e Investigación (GIC15 IT-990-16), Fondo de Investigación Sanitaria (FIS PI11/00203), and UPV/EHU (UFI 11/25)S

    Metastasis of renal clear-cell carcinoma to the oral mucosa, an atypical location

    Get PDF
    The majority of cases of metastatic tumors involve the mandible and some the maxilla but they are considerably less common in intraoral soft tissues. In addition, the primary tumor is known in the majority of cases; although in onethird of such cases, metastasis is the first clinical manifestation. The most common primary tumors metastasizing to the mouth are lung carcinoma in men and breast carcinoma in women. An oral metastasis implies a serious prognosis, as in the majority of patients there is multiple organ involvement at the time of diagnosis. We present the case of a 52-year old patient with renal pathology who came to the emergency room due to a rapidly increasing gingival tumor. With the provisional clinical diagnosis of a pyogenic granuloma,the tumor was excised. Subsequent anatomopathological analysis revealed a tumor metastasis compatible with clear-cell carcinoma, and its renal origin was confirmed by means of immunohistochemical techniques

    Costochondral graft with green-stick fracture used in reconstruction of the mandibular condyle : experience in 13 clinical cases

    Get PDF
    Since its publication in 1920 by Gillies, costochondral grafts have been used by surgeons to replace an injured mandibular condyle and to reconstruct the temporomandibular joint. This procedure is currently applied in cases of congenital dysplasia, developmental defects, temporomandibular ankylosis, neoplastic disease, osteoarthritis and post-traumatic dysfunction. Over the years, various procedures for the reconstruction with this type of graft have been described. In 1989, Mosby and Hiatt described a technique for setting the graft securely, reducing the space between the graft and the mandibular area. In 1998, Monje and Martín-Granizo developed a variation of this method, enabling a precise adaptation of the costochondral graft to the remaining mandibular ramus. The aim of this study is to evaluate the functional and anatomic results of the costochondral graft treatment by green-stick fracture for reconstruction of the TMJ in the 10 years following the description of this technique. We carry out a retrospective study of thirteen cases of temporomandibular pathology (tumors, ankylosis and hypoplasia) treated during a period of ten years from 1998 to 2008. In all these cases, the technique described by Monje and MartínGranizo was used: removal of the sixth rib, fixation to a titanium mini-plate using screws, making an internal corticotomy in order to obtain a green-stick fracture of the outer cortex, providing adequate adaptation of the graft to the mandibular ramus. The graft was then set in place, attaching it with titanium screws. This technique was successful in achieving optimal ossification, a good interincisal opening and satisfactory cosmetic results. In conclusion, according to our experience, the green-stick fracture for the adaptation of costochondral grafts to the remaining mandibular ramus has presented outstanding results in the surgical treatment of temporomandibular pathology

    Apospory and Diplospory in Diploid Boechera (Brassicaceae) May Facilitate Speciation by Recombination-Driven Apomixis-to-Sex Reversals

    Get PDF
    Apomixis (asexual seed formation) in angiosperms occurs either sporophytically, through adventitious embryony, or gametophytically, where an unreduced female gametophyte (embryo sac) forms and produces an unreduced egg that develops into an embryo parthenogenetically. Multiple types of gametophytic apomixis occur, and these are differentiated based on where and when the unreduced gametophyte forms, a process referred to as apomeiosis. Apomeiotic gametophytes form directly from ameiotic megasporocytes, as in Antennaria-type diplospory, from unreduced spores derived from 1st division meiotic restitutions, as in Taraxacum-type diplospory, or from cells of the ovule wall, as in Hieracium-type apospory. Multiple types of apomeiosis occasionally occur in the same plant, which suggests that the different types occur in response to temporal and/or spatial shifts in termination of sexual processes and onset timing of apomeiosis processes. To better understand the origins and evolutionary implications of apomixis in Boechera (Brassicaceae), we determined apomeiosis type for 64 accessions representing 44 taxonomic units. Plants expressing apospory and diplospory were equally common, and these generally produced reduced and unreduced pollen, respectively. Apospory and diplospory occurred simultaneously in individual plants of seven taxa. In Boechera, apomixis perpetuates otherwise sterile or semisterile interspecific hybrids (allodiploids) through multiple generations. Accordingly, ample time, in these multigenerational clones, is available for rare meioses to produce haploid, intergenomically recombined male and female gametes. The fusion of such gametes could then produce segmentally autoploidized progeny. If sex re-emerges among such progeny, then new and genomically unique sexual species could evolve. Herein, we present evidence that such apomixis-facilitated speciation is occurring in Boechera, and we hypothesize that it might also be occurring in facultatively apomictic allodiploids of other angiospermous taxa

    Apospory and Diplospory in Diploid Boechera (Brassicaceae) May Facilitate Speciation by Recombination-Driven Apomixis-to-Sex Reversals

    Get PDF
    Apomixis (asexual seed formation) in angiosperms occurs either sporophytically, through adventitious embryony, or gametophytically, where an unreduced female gametophyte (embryo sac) forms and produces an unreduced egg that develops into an embryo parthenogenetically. Multiple types of gametophytic apomixis occur, and these are differentiated based on where and when the unreduced gametophyte forms, a process referred to as apomeiosis. Apomeiotic gametophytes form directly from ameiotic megasporocytes, as in Antennaria-type diplospory, from unreduced spores derived from 1st division meiotic restitutions, as in Taraxacum-type diplospory, or from cells of the ovule wall, as in Hieracium-type apospory. Multiple types of apomeiosis occasionally occur in the same plant, which suggests that the different types occur in response to temporal and/or spatial shifts in termination of sexual processes and onset timing of apomeiosis processes. To better understand the origins and evolutionary implications of apomixis in Boechera (Brassicaceae), we determined apomeiosis type for 64 accessions representing 44 taxonomic units. Plants expressing apospory and diplospory were equally common, and these generally produced reduced and unreduced pollen, respectively. Apospory and diplospory occurred simultaneously in individual plants of seven taxa. In Boechera, apomixis perpetuates otherwise sterile or semisterile interspecific hybrids (allodiploids) through multiple generations. Accordingly, ample time, in these multigenerational clones, is available for rare meioses to produce haploid, intergenomically recombined male and female gametes. The fusion of such gametes could then produce segmentally autoploidized progeny. If sex re-emerges among such progeny, then new and genomically unique sexual species could evolve. Herein, we present evidence that such apomixis-facilitated speciation is occurring in Boechera, and we hypothesize that it might also be occurring in facultatively apomictic allodiploids of other angiospermous taxa

    Replication by the Epistasis Project of the interaction between the genes for IL-6 and IL-10 in the risk of Alzheimer's disease

    Get PDF
    Background: Chronic inflammation is a characteristic of Alzheimer's disease (AD). An interaction associated with the risk of AD has been reported between polymorphisms in the regulatory regions of the genes for the pro-inflammatory cytokine, interleukin-6 (IL-6, gene: IL6), and the anti-inflammatory cytokine, interleukin-10 (IL-10, gene: IL10).Methods: We examined this interaction in the Epistasis Project, a collaboration of 7 AD research groups, contributing DNA samples from 1,757 cases of AD and 6,295 controls.Results: We replicated the interaction. For IL6 rs2069837 AA x IL10 rs1800871 CC, the synergy factor (SF) was 1.63 (95% confidence interval: 1.10-2.41, p = 0.01), controlling for centre, age, gender and apolipoprotein E epsilon 4 (APOE epsilon 4) genotype. Our results are consistent between North Europe (SF = 1.7, p = 0.03) and North Spain (SF = 2.0, p = 0.09). Further replication may require a meta-analysis. However, association due to linkage disequilibrium with other polymorphisms in the regulatory regions of these genes cannot be excluded.Conclusion: We suggest that dysregulation of both IL-6 and IL-10 in some elderly people, due in part to genetic variations in the two genes, contributes to the development of AD. Thus, inflammation facilitates the onset of sporadic AD

    The new multi-frequency instrument (MFI2) for the QUIJOTE facility in Tenerife

    Get PDF
    The QUIJOTE (Q-U-I joint Tenerife) experiment combines the operation of two radio-telescopes and three instruments working in the microwave bands 10?20 GHz, 26-36 GHz and 35-47 GHz at the Teide Observatory, Tenerife, and has already been presented in previous SPIE meetings (Hoyland, R. J. et al, 2012; Rubiño-Martín et al., 2012). The Cosmology group at the IAC have designed a new upgrade to the MFI instrument in the band 10-20 GHz. The aim of the QUIJOTE telescopes is to characterise the polarised emission of the cosmic microwave background (CMB), as well as galactic and extra-galactic sources, at medium and large angular scales. This MFI2 will continue the survey at even higher sensitivity levels. The MFI2 project led by the Instituto de Astrofísica de Canarias (IAC) consists of five polarimeters, three of them operating in the sub-band 10?15 GHz, and two in the sub-band 15-20 GHz. The MFI2 instrument is expected to be a full two-three times more sensitive than the former MFI. The microwave complex correlator design has been replaced by a simple correlator design with a digital back-end based on the latest Xilinx FPGAs (ZCU111). During the first half of 2019 the manufacture of the new cryostat was completed and since then the opto-mechanical components have been designed and manufactured. It is expected that the cryogenic front-end will be completed by the end of 2022 along with the FPGA acquisition and observing system. This digital system has been employed to be more robust against stray ground-based and satellite interference, having a frequency resolution of 1 MHz.The MFI2 instrument is being developed by the Instituto de Astrofisica de Canarias (IAC), with an instrumental participation from the Universidad Politecnica de Cartagena (UPCT). Partial financial support is provided by the Spanish Ministry of Science and Innovation (MICINN), under the projects AYA2017-84185-P, IACA15-BE-3707, EQC2018-004918-P and the FEDER Agreement INSIDE-OOCC (ICTS-2019-03-IAC-12). We also acknowledge financial support of the Severo Ochoa Programs SEV-2015-0548 and CEX2019-000920-S

    Australian vegetated coastal ecosystems as global hotspots for climate change mitigation

    Get PDF
    Policies aiming to preserve vegetated coastal ecosystems (VCE; tidal marshes, mangroves and seagrasses) to mitigate greenhouse gas emissions require national assessments of blue carbon resources. Here, we present organic carbon (C) storage in VCE across Australian climate regions and estimate potential annual CO2 emission benefits of VCE conservation and restoration. Australia contributes 5–11% of the C stored in VCE globally (70–185 Tg C in aboveground biomass, and 1,055–1,540 Tg C in the upper 1 m of soils). Potential CO2 emissions from current VCE losses are estimated at 2.1–3.1 Tg CO2-e yr-1, increasing annual CO2 emissions from land use change in Australia by 12–21%. This assessment, the most comprehensive for any nation to-date, demonstrates the potential of conservation and restoration of VCE to underpin national policy development for reducing greenhouse gas emissions

    Australian vegetated coastal ecosystems as global hotspots for climate change mitigation

    Get PDF
    © 2019, The Author(s). Policies aiming to preserve vegetated coastal ecosystems (VCE; tidal marshes, mangroves and seagrasses) to mitigate greenhouse gas emissions require national assessments of blue carbon resources. Here, we present organic carbon (C) storage in VCE across Australian climate regions and estimate potential annual CO2 emission benefits of VCE conservation and restoration. Australia contributes 5–11% of the C stored in VCE globally (70–185 Tg C in aboveground biomass, and 1,055–1,540 Tg C in the upper 1 m of soils). Potential CO2 emissions from current VCE losses are estimated at 2.1–3.1 Tg CO2-e yr-1, increasing annual CO2 emissions from land use change in Australia by 12–21%. This assessment, the most comprehensive for any nation to-date, demonstrates the potential of conservation and restoration of VCE to underpin national policy development for reducing greenhouse gas emissions

    Australian vegetated coastal ecosystems as global hotspots for climate change mitigation

    Get PDF
    Unidad de excelencia María de Maeztu MdM-2015-0552Policies aiming to preserve vegetated coastal ecosystems (VCE; tidal marshes, mangroves and seagrasses) to mitigate greenhouse gas emissions require national assessments of blue carbon resources. Here, we present organic carbon (C) storage in VCE across Australian climate regions and estimate potential annual CO emission benefits of VCE conservation and restoration. Australia contributes 5-11% of the C stored in VCE globally (70-185 Tg C in aboveground biomass, and 1,055-1,540 Tg C in the upper 1 m of soils). Potential CO emissions from current VCE losses are estimated at 2.1-3.1 Tg CO-e yr, increasing annual CO emissions from land use change in Australia by 12-21%. This assessment, the most comprehensive for any nation to-date, demonstrates the potential of conservation and restoration of VCE to underpin national policy development for reducing greenhouse gas emissions
    corecore