122 research outputs found

    Infering Air Quality from Traffic Data using Transferable Neural Network Models

    Get PDF
    This work presents a neural network based model for inferring air quality from traffic measurements. It is important to obtain information on air quality in urban environments in order to meet legislative and policy requirements. Measurement equipment tends to be expensive to purchase and maintain. Therefore, a model based approach capable of accurate determination of pollution levels is highly beneficial. The objective of this study was to develop a neural network model to accurately infer pollution levels from existing data sources in Leicester, UK. Neural Networks are models made of several highly interconnected processing elements. These elements process information by their dynamic state response to inputs. Problems which were not solvable by traditional algorithmic approaches frequently can be solved using neural networks. This paper shows that using a simple neural network with traffic and meteorological data as inputs, the air quality can be estimated with a good level of generalisation and in near real-time. By applying these models to links rather than nodes, this methodology can directly be used to inform traffic engineers and direct traffic management decisions towards enhancing local air quality and traffic management simultaneously.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Genetic Classification of Populations using Supervised Learning

    Get PDF
    There are many instances in genetics in which we wish to determine whether two candidate populations are distinguishable on the basis of their genetic structure. Examples include populations which are geographically separated, case--control studies and quality control (when participants in a study have been genotyped at different laboratories). This latter application is of particular importance in the era of large scale genome wide association studies, when collections of individuals genotyped at different locations are being merged to provide increased power. The traditional method for detecting structure within a population is some form of exploratory technique such as principal components analysis. Such methods, which do not utilise our prior knowledge of the membership of the candidate populations. are termed \emph{unsupervised}. Supervised methods, on the other hand are able to utilise this prior knowledge when it is available. In this paper we demonstrate that in such cases modern supervised approaches are a more appropriate tool for detecting genetic differences between populations. We apply two such methods, (neural networks and support vector machines) to the classification of three populations (two from Scotland and one from Bulgaria). The sensitivity exhibited by both these methods is considerably higher than that attained by principal components analysis and in fact comfortably exceeds a recently conjectured theoretical limit on the sensitivity of unsupervised methods. In particular, our methods can distinguish between the two Scottish populations, where principal components analysis cannot. We suggest, on the basis of our results that a supervised learning approach should be the method of choice when classifying individuals into pre-defined populations, particularly in quality control for large scale genome wide association studies.Comment: Accepted PLOS On

    Gram-Negative Bacteremia upon Hospital Admission: When Should Pseudomonas aeruginosa Be Suspected?

    Get PDF
    Background. Pseudomonas aeruginosa is an uncommon cause of community-acquired bacteremia among patients without severe immunodeficiency. Because tension exists between the need to limit unnecessary use of anti-pseudomonal agents and the need to avoid a delay in appropriate therapy, clinicians require better guidance regarding when to cover empirically for P. aeruginosa. We sought to determine the occurrence of and construct a model to predict P. aeruginosa bacteremia upon hospital admission. Methods. A retrospective study was conducted in 4 tertiary care hospitals. Microbiology databases were searched to find all episodes of bacteremia caused by gram-negative rods (GNRs) ⩽48 h after hospital admission. Patient data were extracted from the medical records of 151 patients with P. aeruginosa bacteremia and of 152 randomly selected patients with bacteremia due to Enterobacteriaceae. Discriminative parameters were identified using logistic regression, and the probabilities of having P. aeruginosa bacteremia were calculated. Results. P. aeruginosa caused 6.8% of 4114 unique patient episodes of GNR bacteremia upon hospital admission (incidence ratio, 5 cases per 10,000 hospital admissions). Independent predictors of P. aeruginosa bacteremia were severe immunodeficiency, age >90 years, receipt of antimicrobial therapy within past 30 days, and presence of a central venous catheter or a urinary device. Among 250 patients without severe immunodeficiency, if no predictor variables existed, the likelihood of having P. aeruginosa bacteremia was 1:42. If ⩾2 predictors existed, the risk increased to nearly 1:3. Conclusions. P. aeruginosa bacteremia upon hospital admission in patients without severe immunodeficiency is rare. Among immunocompetent patients with suspected GNR bacteremia who have ⩾2 predictors, empirical anti-pseudomonal treatment is warrante

    Neural Network Parameterizations of Electromagnetic Nucleon Form Factors

    Full text link
    The electromagnetic nucleon form-factors data are studied with artificial feed forward neural networks. As a result the unbiased model-independent form-factor parametrizations are evaluated together with uncertainties. The Bayesian approach for the neural networks is adapted for chi2 error-like function and applied to the data analysis. The sequence of the feed forward neural networks with one hidden layer of units is considered. The given neural network represents a particular form-factor parametrization. The so-called evidence (the measure of how much the data favor given statistical model) is computed with the Bayesian framework and it is used to determine the best form factor parametrization.Comment: The revised version is divided into 4 sections. The discussion of the prior assumptions is added. The manuscript contains 4 new figures and 2 new tables (32 pages, 15 figures, 2 tables

    Development of appropriateness explicit criteria for cataract extraction by phacoemulsification

    Get PDF
    BACKGROUND: Consensus development techniques were used in the late 1980s to create explicit criteria for the appropriateness of cataract extraction. We developed a new appropriateness of indications tool for cataract following the RAND method. We tested the validity of our panel results. METHODS: Criteria were developed using a modified Delphi panel judgment process. A panel of 12 ophthalmologists was assembled. Ratings were analyzed regarding the level of agreement among panelists. We studied the influence of all variables on the final panel score using linear and logistic regression models. The explicit criteria developed were summarized by classification and regression tree analysis. RESULTS: Of the 765 indications evaluated by the main panel in the second round, 32.9% were found appropriate, 30.1% uncertain, and 37% inappropriate. Agreement was found in 53% of the indications and disagreement in 0.9%. Seven variables were considered to create the indications and divided into three groups: simple cataract, with diabetic retinopathy, or with other ocular pathologies. The preoperative visual acuity in the cataractous eye and visual function were the variables that best explained the panel scoring. The panel results were synthesized and presented in three decision trees. Misclassification error in the decision trees, as compared with the panel original criteria, was 5.3%. CONCLUSION: The parameters tested showed acceptable validity for an evaluation tool. These results support the use of this indication algorithm as a screening tool for assessing the appropriateness of cataract extraction in field studies and for the development of practice guidelines

    On the Bounds of Function Approximations

    Full text link
    Within machine learning, the subfield of Neural Architecture Search (NAS) has recently garnered research attention due to its ability to improve upon human-designed models. However, the computational requirements for finding an exact solution to this problem are often intractable, and the design of the search space still requires manual intervention. In this paper we attempt to establish a formalized framework from which we can better understand the computational bounds of NAS in relation to its search space. For this, we first reformulate the function approximation problem in terms of sequences of functions, and we call it the Function Approximation (FA) problem; then we show that it is computationally infeasible to devise a procedure that solves FA for all functions to zero error, regardless of the search space. We show also that such error will be minimal if a specific class of functions is present in the search space. Subsequently, we show that machine learning as a mathematical problem is a solution strategy for FA, albeit not an effective one, and further describe a stronger version of this approach: the Approximate Architectural Search Problem (a-ASP), which is the mathematical equivalent of NAS. We leverage the framework from this paper and results from the literature to describe the conditions under which a-ASP can potentially solve FA as well as an exhaustive search, but in polynomial time.Comment: Accepted as a full paper at ICANN 2019. The final, authenticated publication will be available at https://doi.org/10.1007/978-3-030-30487-4_3

    Stochastic Dominance Analysis of CTA Funds

    Get PDF
    In this paper, we employ the stochastic dominance approach to rank the performance of commodity trading advisors (CTA) funds. An advantage of this approach is that it alleviates the problems that can arise if CTA returns are not normally distributed by utilizing the entire returns distribution. We find both first-order and higher-order stochastic dominance relationships amongst the CTA funds and conclude that investors would be better off investing in the first-order dominant funds to maximize their expected utilities and expected wealth. However, for higher-order dominant CTA, riskaverse investors can maximize their expected utilities but not their expected wealth. We conclude that the stochastic dominance approach is more appropriate compared with traditional approaches as a filter in the CTA selection process given that a meaningful economic interpretation of the results is possible as the entire return distribution is utilized when returns are non-normal
    corecore