1,949 research outputs found

    Morphological characteristics of the sinus node on postmortem tissue

    Get PDF
    The sinus node is an intensively researched structure in terms of anatomical, histological, electrophysiological, molecular and genetic approach. For postmortem diagnosis it is still difficult to investigate due to a still reduced accessibility. In this study we tried and succeed to apply molecular biology techniques on postmortem tissues in order to widen the range of postmortem forensic investigation and provide information related to the diagnostic of cardiac arrhythmia. We described the stages of this investigation, with dissection, preservation and analysis that included classical histology, immunohistochemistry, confocal microscope, microdissection, RIN testing, mRNA expression obtaining a precise morphofunctional location of the sinus node

    Insights from echocardiography, magnetic resonance imaging, and microcomputed tomography relative to the mid-myocardial left ventricular echogenic zone.

    Get PDF
    Background: The anatomical substrate for the mid-mural ventricular hyperechogenic zone remains uncertain, but it may represent no more than ultrasound reflected from cardiomyocytes orientated orthogonally to the ultrasonic beam. We sought to ascertain the relationship between the echogenic zone and the orientation of the cardiomyocytes. Methods: We used 3D echocardiography, diffusion tensor imaging, and microcomputed tomography to analyze the location and orientation of cardiomyocytes within the echogenic zone. Results: We demonstrated that visualization of the echogenic zone is dependent on the position of the transducer and is most clearly seen from the apical window. Diffusion tensor imaging and microcomputed tomography show that the echogenic zone seen from the apical window corresponds to the position of the circumferentially orientated cardiomyocytes. An oblique band seen in the parasternal view relates to cardiomyocytes orientated orthogonally to the ultrasonic beam. Conclusions: The mid-mural ventricular hyperechogenic zone represents reflected ultrasound from cardiomyocytes aligned orthogonal to the ultrasonic beam. The echogenic zone does not represent a space, a connective tissue sheet, a boundary between ascending and descending limbs of a hypothetical helical ventricular myocardial band, nor an abrupt change in cardiomyocyte orientation

    Insights from echocardiography, magnetic resonance imaging, and microcomputed tomography relative to the mid-myocardial left ventricular echogenic zone.

    Get PDF
    BACKGROUND: The anatomical substrate for the mid-mural ventricular hyperechogenic zone remains uncertain, but it may represent no more than ultrasound reflected from cardiomyocytes orientated orthogonally to the ultrasonic beam. We sought to ascertain the relationship between the echogenic zone and the orientation of the cardiomyocytes. METHODS: We used 3D echocardiography, diffusion tensor imaging, and microcomputed tomography to analyze the location and orientation of cardiomyocytes within the echogenic zone. RESULTS: We demonstrated that visualization of the echogenic zone is dependent on the position of the transducer and is most clearly seen from the apical window. Diffusion tensor imaging and microcomputed tomography show that the echogenic zone seen from the apical window corresponds to the position of the circumferentially orientated cardiomyocytes. An oblique band seen in the parasternal view relates to cardiomyocytes orientated orthogonally to the ultrasonic beam. CONCLUSIONS: The mid-mural ventricular hyperechogenic zone represents reflected ultrasound from cardiomyocytes aligned orthogonal to the ultrasonic beam. The echogenic zone does not represent a space, a connective tissue sheet, a boundary between ascending and descending limbs of a hypothetical helical ventricular myocardial band, nor an abrupt change in cardiomyocyte orientation

    Congestive Heart Failure Leads to Prolongation of the PR Interval and Atrioventricular Junction Enlargement and Ion Channel Remodelling in the Rabbit.

    Get PDF
    Heart failure is a major killer worldwide. Atrioventricular conduction block is common in heart failure; it is associated with worse outcomes and can lead to syncope and bradycardic death. We examine the effect of heart failure on anatomical and ion channel remodelling in the rabbit atrioventricular junction (AVJ). Heart failure was induced in New Zealand rabbits by disruption of the aortic valve and banding of the abdominal aorta resulting in volume and pressure overload. Laser micro-dissection and real-time polymerase chain reaction (RT-PCR) were employed to investigate the effects of heart failure on ion channel remodelling in four regions of the rabbit AVJ and in septal tissues. Investigation of the AVJ anatomy was performed using micro-computed tomography (micro-CT). Heart failure animals developed first degree heart block. Heart failure caused ventricular myocardial volume increase with a 35% elongation of the AVJ. There was downregulation of HCN1 and Cx43 mRNA transcripts across all regions and downregulation of Cav1.3 in the transitional tissue. Cx40 mRNA was significantly downregulated in the atrial septum and AVJ tissues but not in the ventricular septum. mRNA abundance for ANP, CLCN2 and Navβ1 was increased with heart failure; Nav1.1 was increased in the inferior nodal extension/compact node area. Heart failure in the rabbit leads to prolongation of the PR interval and this is accompanied by downregulation of HCN1, Cav1.3, Cx40 and Cx43 mRNAs and anatomical enlargement of the entire heart and AVJ

    Developing a novel comprehensive framework for the investigation of cellular and whole heart electrophysiology in the in situ human heart: Historical perspectives, current progress and future prospects

    Get PDF
    Understanding the mechanisms of fatal ventricular arrhythmias is of great importance. In view of the many electrophysiological differences that exist between animal species and humans, the acquisition of basic electrophysiological data in the intact human heart is essential to drive and complement experimental work in animal and in-silico models. Over the years techniques have been developed to obtain basic electrophysiological signals directly from the patients by incorporating these measurements into routine clinical procedures which access the heart such as cardiac catheterisation and cardiac surgery. Early recordings with monophasic action potentials provided valuable information including normal values for the in vivo human heart, cycle length dependent properties, the effect of ischaemia, autonomic nervous system activity, and mechano-electric interaction. Transmural recordings addressed the controversial issue of the mid myocardial “M” cell. More recently, the technique of multielectrode mapping (256 electrodes) developed in animal models has been extended to humans, enabling mapping of activation and repolarisation on the entire left and right ventricular epicardium in patients during cardiac surgery. Studies have examined the issue of whether ventricular fibrillation was driven by a “mother” rotor with inhomogeneous and fragmented conduction as in some animal models, or by multiple wavelets as in other animal studies; results showed that both mechanisms are operative in humans. The simpler spatial organisation of human VF has important implications for treatment and prevention. To link in-vivo human electrophysiological mapping with cellular biophysics, multielectrode mapping is now being combined with myocardial biopsies. This technique enables region-specific electrophysiology changes to be related to underlying cellular biology, for example: APD alternans, which is a precursor of VF and sudden death. The mechanism is incompletely understood but related to calcium cycling and APD restitution. Multielectrode sock mapping during incremental pacing enables epicardial sites to be identified which exhibit marked APD alternans and sites where APD alternans is absent. Whole heart electrophysiology is assessed by activation repolarisation mapping and analysis is performed immediately on-site in order to guide biopsies to specific myocardial sites. Samples are analysed for ion channel expression, Ca2+-handling proteins, gap junctions and extracellular matrix. This new comprehensive approach to bridge cellular and whole heart electrophysiology allowed to identify 20 significant changes in mRNA for ion channels Ca2+-handling proteins, a gap junction channel, a Na+–K+ pump subunit and receptors (particularly Kir 2.1) between the positive and negative alternans sites

    Targeting miR-423-5p reverses exercise training–induced HCN4 channel remodeling and sinus bradycardia

    Get PDF
    Rationale: Downregulation of the pacemaking ion channel, HCN4 (hyperpolarization-activated cyclic nucleotide gated channel 4), and the corresponding ionic current, If, underlies exercise training–induced sinus bradycardia in rodents. If this occurs in humans, it could explain the increased incidence of bradyarrhythmias in veteran athletes, and it will be important to understand the underlying processes. Objective: To test the role of HCN4 in the training-induced bradycardia in human athletes and investigate the role of microRNAs (miRs) in the repression of HCN4. Methods and Results: As in rodents, the intrinsic heart rate was significantly lower in human athletes than in nonathletes, and in all subjects, the rate-lowering effect of the HCN selective blocker, ivabradine, was significantly correlated with the intrinsic heart rate, consistent with HCN repression in athletes. Next-generation sequencing and quantitative real-time reverse transcription polymerase chain reaction showed remodeling of miRs in the sinus node of swim-trained mice. Computational predictions highlighted a prominent role for miR-423-5p. Interaction between miR-423-5p and HCN4 was confirmed by a dose-dependent reduction in HCN4 3′-untranslated region luciferase reporter activity on cotransfection with precursor miR-423-5p (abolished by mutation of predicted recognition elements). Knockdown of miR-423-5p with anti-miR-423-5p reversed training-induced bradycardia via rescue of HCN4 and If. Further experiments showed that in the sinus node of swim-trained mice, upregulation of miR-423-5p (intronic miR) and its host gene, NSRP1, is driven by an upregulation of the transcription factor Nkx2.5. Conclusions: HCN remodeling likely occurs in human athletes, as well as in rodent models. miR-423-5p contributes to training-induced bradycardia by targeting HCN4. This work presents the first evidence of miR control of HCN4 and heart rate. miR-423-5p could be a therapeutic target for pathological sinus node dysfunction in veteran athletes

    Atrioventricular Node Dysfunction and Ion Channel Transcriptome in Pulmonary Hypertension

    Get PDF
    Background: Heart block is associated with pulmonary hypertension, and the aim of the study was to test the hypothesis that the heart block is the result of a change in the ion channel transcriptome of the atrioventricular (AV) node. Methods and Results: The most commonly used animal model of pulmonary hypertension, the monocrotaline-injected rat, was used. The functional consequences of monocrotaline injection were determined by echocardiography, ECG recording, and electrophysiological experiments on the Langendorff-perfused heart and isolated AV node. The ion channel transcriptome was measured by quantitative PCR, and biophysically detailed computer modeling was used to explore the changes observed. After monocrotaline injection, echocardiography revealed the pattern of pulmonary artery blood flow characteristic of pulmonary hypertension and right-sided hypertrophy and failure; the Langendorff-perfused heart and isolated AV node revealed dysfunction of the AV node (eg, 50% incidence of heart block in isolated AV node); and quantitative PCR revealed a widespread downregulation of ion channel and related genes in the AV node (eg, >50% downregulation of Cav1.2/3 and HCN1/2/4 channels). Computer modeling predicted that the changes in the transcriptome if translated into protein and function would result in heart block. Conclusions: Pulmonary hypertension results in a derangement of the ion channel transcriptome in the AV node, and this is the likely cause of AV node dysfunction in this disease

    CURVACE - CURVed Artificial Compound Eyes

    Get PDF
    International audienceCURVACE aims at designing, developing, and assessing CURVed Artificial Compound Eyes, a radically novel family of vision systems. This innovative approach will provide more efficient visual abilities for embedded applications that require motion analysis in low-power and small packages. Compared to conventional cameras, artificial compound eyes will offer a much larger field of view with negligible distortion and exceptionally high temporal resolution in smaller size and weight that will fit the requirements of a wide range of applications

    Effect of promoter architecture on the cell-to-cell variability in gene expression

    Get PDF
    According to recent experimental evidence, the architecture of a promoter, defined as the number, strength and regulatory role of the operators that control the promoter, plays a major role in determining the level of cell-to-cell variability in gene expression. These quantitative experiments call for a corresponding modeling effort that addresses the question of how changes in promoter architecture affect noise in gene expression in a systematic rather than case-by-case fashion. In this article, we make such a systematic investigation, based on a simple microscopic model of gene regulation that incorporates stochastic effects. In particular, we show how operator strength and operator multiplicity affect this variability. We examine different modes of transcription factor binding to complex promoters (cooperative, independent, simultaneous) and how each of these affects the level of variability in transcription product from cell-to-cell. We propose that direct comparison between in vivo single-cell experiments and theoretical predictions for the moments of the probability distribution of mRNA number per cell can discriminate between different kinetic models of gene regulation.Comment: 35 pages, 6 figures, Submitte
    corecore