126 research outputs found

    Iron and molybdenum valences in double-perovskite (Sr,Nd)2FeMoO6: electron-doping effect

    Full text link
    Double perovskite, (Sr1-xNdx)2FeMoO6, was doped with electrons through partial substitution of divalent Sr by trivalent Nd (0 < x < 0.2). The Fe valence and the degree of B-site order were probed by 57Fe Mossbauer spectroscopy. Replacing Sr by Nd increased the fraction of Fe and Mo atoms occupying wrong sites, i.e. antisite disorder. It had very little effect on the Fe valence: a small but visible increase in the isomer shift was seen for the mixed-valent FeII/III atoms occupying the right site indicating a slight movement towards divalency of these atoms, which was more than counterbalanced by the increase in the fraction of antisite Fe atoms with III valence state. It is therefore argued that the bulk of the electron doping is received by antisite Mo atoms, which - being surrounded by six MoV/VI atoms - prefer the lower IV/V valence state. Thus under Nd substitution, the charge-neutrality requirement inflicts a lattice disorder such that low-valent MoIV/V can exist.Comment: 15 pages, 6 figures, to appear in Solid State Commu

    Prenormative verification and validation of a protocol for measuring magnetite-maghemite ratios in magnetic nanoparticles

    Get PDF
    An important step in establishing any new metrological method is a prenormative interlaboratory study, designed to verify and validate the method against its stated aims. Here, the 57Fe Mössbauer spectrometric 'centre of gravity' (COG) method was tested as a means of quantifying the magnetite/maghemite (Fe3O4/γ-Fe2O3) composition ratio in biphasic magnetic nanoparticles. The study involved seven laboratories across Europe and North and South America, and six samples—a verification set of three microcrystalline mixtures of known composition, and a validation set of three nanoparticle samples of unknown composition. The spectra were analysed by each participant using in-house fitting packages, and ex post facto by a single operator using an independent package. Repeatability analysis was performed using Mandel's h statistic and modified Youden plots. It is shown that almost all (83/84) of the Mandel h statistic values fall within the 0.5% significance level, with the one exception being borderline. Youden-based pairwise analysis indicates the dominance of random uncertainties; and in almost all cases the data analysis phase is only a minor contributor to the overall measurement uncertainty. It is concluded that the COG method is a robust and promising candidate for its intended purpose

    Curie temperature enhancement of electron doped Sr2_2FeMoO6_6 perovskites studied by photoemission spectroscopy

    Full text link
    We report here on the electronic structure of electron-doped half-metallic ferromagnetic perovskites such Sr2x_{2-x}Lax_xFeMoO6_6 (xx=0-0.6) as obtained from high-resolved valence-band photoemission spectroscopy (PES). By comparing the PES spectra with band structure calculations, a distinctive peak at the Fermi level (EF_F) with predominantly (Fe+Mo) t2g_{2g}^\downarrow character has been evidenced for all samples, irrespectively of the xx values investigated. Moreover, we show that the electron doping due to the La substitution provides selectively delocalized carriers to the t2g_{2g}^\downarrow metallic spin channel. Consequently, a gradual rising of the density of states at the EF_F has been observed as a function of the La doping. By changing the incoming photon energy we have shown that electron doping mainly rises the density of states of Mo parentage. These findings provide fundamental clues for understanding the origin of ferromagnetism in these oxides and shall be of relevance for tailoring oxides having still higher TC_C

    Phase diagram and influence of defects in the double perovskites

    Get PDF
    The phase diagram of the double perovskites of the type Sr_{2-x} La_x Fe Mo O_6 is analyzed, with and without disorder due to antisites. In addition to an homogeneous half metallic ferrimagnetic phase in the absence of doping and disorder, we find antiferromagnetic phases at large dopings, and other ferrimagnetic phases with lower saturation magnetization, in the presence of disorder.Comment: 4 pages, 3 postscript figures, some errata correcte

    Iron valence in double-perovskite (Ba,Sr,Ca)2FeMoO6: Isovalent substitution effect

    Full text link
    In the Fe-Mo based B-site ordered double-perovskite, A2FeMoO6.0, with iron in the mixed-valence II/III state, the valence value of Fe is not precisely fixed at 2.5 but may be fine-tuned by means of applying chemical pressure at the A-cation site. This is shown through a systematic 57Fe Mossbauer spectroscopy study using a series of A2FeMoO6.0 [A = (Ba,Sr) or (Sr,Ca)] samples with high degree of Fe/Mo order, the same stoichiometric oxygen content and also almost the same grain size. The isomer shift values and other hyperfine parameters obtained from the Mossbauer spectra confirm that Fe remains in the mixed-valence state within the whole range of A constituents. However, upon increasing the average cation size at the A site the precise valence of Fe is found to decrease such that within the A = (Ba,Sr) regime the valence of Fe is closer to II, while within the A = (Sr,Ca) regime it is closer to the actual mixed-valence II/III state. As the valence of Fe approaches II, the difference in charges between Fe and Mo increases, and parallel with this the degree of Fe/Mo order increases. Additionally, for the less-ordered samples an increased tendency of clustering of the anti-site Fe atoms is deduced from the Mossbauer data.Comment: 19 pages, 6 figures, submitted to Phys. Rev.

    Strong magnetic exchange and frustrated ferrimagnetic order in a weberite-type inorganic-organic hybrid fluoride

    Get PDF
    LC acknowledges the University of Liverpool for start-up funding and support. Work at the University of St Andrews was supported by a Leverhulme Research Project Grant. Access to beam time at the ISIS Neutron and Muon Facility was supported by the Science and Technology Facilities Council. The authors also gratefully acknowledge Delphine Toulemon, ITODYS, UMR7086 CNRS, Université Paris VII, for assistance with magnetisation measurements.We combine powder neutron diffraction, magnetometry and 57Fe Mössbauer spectrometry to determine the nuclear and magnetic structures of a strongly interacting weberite-type inorganic-organic hybrid fluoride, Fe2F5(Htaz). In this structure, Fe2+ and Fe3+ cations form magnetically frustrated hexagonal tungsten bronze (HTB) layers of corner sharing octahedra. Our powder neutron diffraction data reveal that, unlike its purely inorganic fluoride weberite counterparts which adopt a centrosymmetric Imma structure, the room- temperature nuclear structure of Fe2F5(Htaz) is best described by a non centrosymmetric Ima2 model with refined lattice parameters a = 9.1467(2) Å, b = 9.4641(2) Å and c = 7.4829(2) Å. Magnetic susceptibility and magnetisation measurements reveal that strong antiferromagnetic exchange interactions prevail in Fe2F5(Htaz) leading to a magnetic ordering transition at TN = 93 K. Analysis of low-temperature powder neutron diffraction data indicates that below TN, the Fe2+ sublattice is ferromagnetic, with a moment of 4.1(1) μB per Fe2+ at 2 K, but that an antiferromagnetic component of 0.6(3) μB cants the main ferromagnetic component of Fe3+, which aligns antiferromagnetically to the Fe2+ sublattice. The zero-field and in-field Mössbauer spectra give clear evidence of an excess of high-spin Fe3+ species within the structure and a non collinear magnetic structure.PostprintPeer reviewe

    Microstructural and Mössbauer properties of low temperature synthesized Ni-Cd-Al ferrite nanoparticles

    Get PDF
    We report the influence of Al3+ doping on the microstructural and Mössbauer properties of ferrite nanoparticles of basic composition Ni0.2Cd0.3Fe2.5 - xAlxO4 (0.0 ≤ x ≤ 0.5) prepared through simple sol-gel method. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray, transmission electron microscopy (TEM), Fourier transformation infrared (FTIR), and Mössbauer spectroscopy techniques were used to investigate the structural, chemical, and Mössbauer properties of the grown nanoparticles. XRD results confirm that all the samples are single-phase cubic spinel in structure excluding the presence of any secondary phase corresponding to any structure. SEM micrographs show the synthesized nanoparticles are agglomerated but spherical in shape. The average crystallite size of the grown nanoparticles was calculated through Scherrer formula and confirmed by TEM and was found between 2 and 8 nm (± 1). FTIR results show the presence of two vibrational bands corresponding to tetrahedral and octahedral sites. Mössbauer spectroscopy shows that all the samples exhibit superparamagnetism, and the quadrupole interaction increases with the substitution of Al3+ ions

    Extrinsic Magnetotransport Phenomena in Ferromagnetic Oxides

    Full text link
    This review is focused on extrinsic magnetotransport effects in ferromagnetic oxides. It consists of two parts; the second part is devoted to an overview of experimental data and theoretical models for extrinsic magnetotransport phenomena. Here a critical discussion of domain-wall scattering is given. Results on surfacial and interfacial magnetism in oxides are presented. Spin-polarized tunnelling in ferromagnetic junctions is reviewed and grain-boundary magnetoresistance is interpreted within a model of spin-polarized tunnelling through natural oxide barriers. The situation in ferromagnetic oxides is compared with data and models for conventional ferromagnets. The first part of the review summarizes basic material properties, especially data on the spin-polarization and evidence for half-metallicity. Furthermore, intrinsic conduction mechanisms are discussed. An outlook on the further development of oxide spin-electronics concludes this review.Comment: 133 pages, 47 figures, submitted to Rep. Prog. Phy

    Presence of Metallic Fe Nanoclusters in r-(Al,Fe)2O3 Solid Solutions

    Get PDF
    Powders of R-(Al1-xFex)2O3 solid solutions prepared by the calcination in air of the corresponding γ-(Al1- xFex)2O3 powders were studied by several techniques including X-ray diffraction, field-emission-gun scanning electron microscopy, transmission Mössbauer spectroscopy, integral low-energy electron Mössbauer spectroscopy (ILEEMS), and Fe K-edge X-ray absorption near-edge structure (XANES) measurements. The asymmetry of the characteristic Mo¨ssbauer doublet representing Fe3+ ions substituting for Al3+ ions in the corundum lattice of R-(Al1-xFex)2O3 solid solutions was resolved and explained for the first time by using two additional subspectra, i.e., a broad second doublet characteristic of a very distorted octahedral site for Fe3+ and a singlet attributable to R-Fe, suggesting the presence of metallic iron nanoclusters consisting of only a few number of atoms within the solid solution grains. ILEEMS studies showed that the Fe nanoclusters are evenly distributed among the surface layers and the cores of the grains. Fe K-edge XANES measurements further confirmed the occurrence of metallic iron. The proportion of Fe nanoclusters increases when the total iron content is decreased, as does the proportion of distorted octahedral site, suggesting that they are located around the iron nanoclusters. The formation of the metallic Fe nanoclusters in the R-(Al1-xFex)2O3 grains is thought to be a consequence of the γ f R phase transition which implies structural rearrangement on both the cationic and anionic sublattices

    Magnetic properties of maghemite nanoparticles: a heisenberg - monte carlo study

    No full text
    En este trabajo se investigan las propiedades magnéticas de nanopartículas de maghemita g -Fe 2 O 3 utilizando el método de Monte Carlo-Metropolis sobre la base de un modelo de Heisenberg clásico tridimensional con anisotropía magnetocristalina. La estructura espinela ha sido simulada en forma realista con condiciones de frontera libres para tener en cuenta el efecto de la superficie en una nanopartícula de diámetro 3.34 nm. También se han tenido en cuenta las diferentes interacciones de superintercambio competitivas entre iones de Fe 3+ incluyendo sitios tetraédricos y octaédricos. Los resultados revelan una marcada disminución de la temperatura de Curie de la nanopartícula considerada respecto a aquella de una maghemita en bulk, como consecuencia del menor número de coordinación promedio. Finalmente se presenta y discute el efecto de la anisotropía de superficie sobre la configuración magnética de los espines en el límite cuando la temperatura tiende a cero
    corecore