823 research outputs found
Genotypic variation in phosphorus efficiency between wheat cultivars grown under greenhouse and field conditions
Phosphorus (P) efficiency (relative growth), which is described as the ratio of shoot dry matter or grain yield at deficient P supply to that obtained under adequate P supply, was compared in 25 winter wheat cultivars grown under greenhouse and field conditions with low and adequate P levels in a P-deficient calcareous soil. Adequate P supply resulted in significant increases in shoot dry weight and grain yield under both experimental conditions. In the greenhouse experiment, the increases in shoot dry weight under adequate P supply (80 mg kg(-1)) were from 0% (cv: C-1252) to 34% (cv: Dagdas). Under field conditions, the cultivars showed much greater variation in their response to adequate P supply (60 kg ha(-1)): the increases in shoot dry weight and grain yield with adequate P supply were between -2% (cv: Sivas-111/33) and 25% (cv: Kirac-66) for shoot dry matter production at the heading stage and between 0% (cv: Kirkpinar-79) and 76% (cv: Kate A-1) for grain yield at maturity. Almost all cultivars behaved totally different in their response to P deficiency under greenhouse and field conditions. Phosphorus efficiency ratios (relative growth) under greenhouse conditions did not correlate with the P efficiency ratios under field conditions. In general, durum wheat cultivars were found to be more P efficient compared with bread wheat cultivars. The results of this study indicated that there is wide variation in tolerance to P deficiency among wheat cultivars that can be exploited in breeding new wheat cultivars for high P deficiency tolerance. The results also demonstrated that P efficiency was expressed differently among the wheat cultivars when grown under greenhouse and field conditions and, therefore, special attention should be paid to growth conditions in screening wheat for P efficiency
Impairment of Procedural Learning and Motor Intracortical Inhibition in Neurofibromatosis Type 1 Patients
AbstractBackgroundCognitive difficulties are the most common neurological complications in neurofibromatosis type 1 (NF1) patients. Recent animal models proposed increased GABA-mediated inhibition as one underlying mechanism directly affecting the induction of long-term potentiation (LTP) and learning. In most adult NF1 patients, apparent cognitive and attentional deficits, tumors affecting the nervous system and other confounding factors for neuroscientific studies are difficult to control for. Here we used a highly specific group of adult NF1 patients without cognitive or nervous system impairments. Such selected NF1 patients allowed us to address the following open questions: Is the learning process of acquiring a challenging motor skill impaired in NF1 patients? And is such an impairment in relation to differences in intracortical inhibition?MethodsWe used an established non-invasive, double-pulse transcranial magnetic stimulation (dp-TMS) paradigm to assess practice-related modulation of intracortical inhibition, possibly mediated by gamma-minobutyric acid (GABA)ergic-neurotransmission. This was done during an extended learning paradigm in a group of NF1 patients without any neuropsychological deficits, functioning normally in daily life and compared them to healthy age-matched controls.FindingsNF1 patients experienced substantial decline in motor skill acquisition (F=9.2, p=0.008) over five-consecutives training days mediated through a selective reduction in the early acquisition (online) and the consolidation (offline) phase. Furthermore, there was a consistent decrease in task-related intracortical inhibition as a function of the magnitude of learning (T=2.8, p=0.014), especially evident after the early acquisition phase.InterpretationsCollectively, the present results provide evidence that learning of a motor skill is impaired even in clinically intact NF1 patients based, at least partially, on a GABAergic-cortical dysfunctioning as suggested in previous animal work
Borealin: a novel chromosomal passenger required for stability of the bipolar mitotic spindle
The chromosomal passenger complex of Aurora B kinase, INCENP, and Survivin has essential regulatory roles at centromeres and the central spindle in mitosis. Here, we describe Borealin, a novel member of the complex. Approximately half of Aurora B in mitotic cells is complexed with INCENP, Borealin, and Survivin; and Borealin binds Survivin and INCENP in vitro. A second complex contains Aurora B and INCENP, but no Borealin or Survivin. Depletion of Borealin by RNA interference delays mitotic progression and results in kinetochore–spindle misattachments and an increase in bipolar spindles associated with ectopic asters. The extra poles, which apparently form after chromosomes achieve a bipolar orientation, severely disrupt the partitioning of chromosomes in anaphase. Borealin depletion has little effect on histone H3 serine10 phosphorylation. These results implicate the chromosomal passenger holocomplex in the maintenance of spindle integrity and suggest that histone H3 serine10 phosphorylation is performed by an Aurora B–INCENP subcomplex
Differential behavioral and physiological effects of anodal transcranial direct current stimulation in healthy adults of younger and older age
Changes in Îł-aminobutyric acid (GABA) mediated synaptic transmission have been associated with age-related motor and cognitive functional decline. Since anodal transcranial direct current stimulation (atDCS) has been suggested to target cortical GABAergic inhibitory interneurons, its potential for the treatment of deficient inhibitory activity and functional decline is being increasingly discussed. Therefore, after-effects of a single session of atDCS on resting-state and event-related short-interval intracortical inhibition (SICI) as evaluated with double-pulse TMS and dexterous manual performance were examined using a sham-controlled cross-over design in a sample of older and younger participants. The atDCS effect on resting-state inhibition differed in direction, magnitude, and timing, i.e., late relative release of inhibition in the younger and early relative increase in inhibition in the older. More pronounced release of event-related inhibition after atDCS was exclusively seen in the older. Event-related modulation of inhibition prior to stimulation predicted the magnitude of atDCS-induced effects on resting-state inhibition. Specifically, older participants with high modulatory capacity showed a disinhibitory effect comparable to the younger. Beneficial effects on behavior were mainly seen in the older and in tasks requiring higher dexterity, no clear association with physiological changes was found. Differential effects of atDCS on SICI, discussed to reflect GABAergic inhibition at the level of the primary motor cortex, might be distinct in older and younger participants depending on the functional integrity of the underlying neural network. Older participants with preserved modulatory capacity, i.e., a physiologically "young" motor network, were more likely to show a disinhibitory effect of atDCS. These results favor individually tailored application of tDCS with respect to specific target groups
Methods for analysis of brain connectivity : An IFCN-sponsored review
The goal of this paper is to examine existing methods to study the "Human Brain Connectome" with a specific focus on the neurophysiological ones. In recent years, a new approach has been developed to evaluate the anatomical and functional organization of the human brain: the aim of this promising multimodality effort is to identify and classify neuronal networks with a number of neurobiologically meaningful and easily computable measures to create its connectome. By defining anatomical and functional connections of brain regions on the same map through an integrated approach, comprising both modern neurophysiological and neuroimaging (i.e. flow/metabolic) brain-mapping techniques, network analysis becomes a powerful tool for exploring structural-functional connectivity mechanisms and for revealing etiological relationships that link connectivity abnormalities to neuropsychiatric disorders. Following a recent IFCN-endorsed meeting, a panel of international experts was selected to produce this current state-of-art document, which covers the available knowledge on anatomical and functional connectivity, including the most commonly used structural and functional MRI, EEG, MEG and non-invasive brain stimulation techniques and measures of local and global brain connectivity. (C) 2019 Published by Elsevier B.V. on behalf of International Federation of Clinical Neurophysiology.Peer reviewe
Dimorphism in genes encoding sexual-stage proteins of Plasmodium ovale curtisi and Plasmodium ovale wallikeri.
Plasmodium ovale curtisi and Plasmodium ovale wallikeri are distinct species of malaria parasite which are sympatric throughout the tropics, except for the Americas. Despite this complete overlap in geographic range, these two species do not recombine. Although morphologically very similar, the two taxa must possess distinct characters which prevent recombination between them. We hypothesised that proteins required for sexual reproduction have sufficiently diverged between the two species to prevent recombination in any mosquito blood meal in which gametocytes of both species are ingested. In order to investigate possible barriers to inter-species mating between P. ovale curtisi and P. ovale wallikeri, homologues of genes encoding sexual stage proteins in other plasmodia were identified and compared between the two species. Database searches with motifs for 6-cysteine, Limulus Coagulation factor C domain-containing proteins and other relevant sexual stage proteins in the genus Plasmodium were performed in the available P. ovale curtisi partial genome database (Wellcome Trust Sanger Institute, UK). Sequence fragments obtained were used as the basis for PCR walking along each gene of interest in reference isolates of both P. ovale curtisi and P. ovale wallikeri. Sequence alignment of the homologues of each gene in each species showed complete dimorphism across all isolates. In conclusion, substantial divergence between sexual stage proteins in the two P. ovale spp. was observed, providing further evidence that these do not recombine in nature. Incompatibility of proteins involved in sexual development and fertilisation thus remains a plausible explanation for the observed lack of natural recombination between P. ovale curtisi and P. ovale wallikeri
Manual dexterity: functional lateralisation patterns and motor efficiency
Manual tasks are an important goal-directed ability. In this EEG work, we studied how handedness affects the hemispheric lateralisation patterns during performance of visually-driven movements with either hand. The neural correlates were assessed by means of EEG coherence whereas behavioural output was measured by motor error. The EEG data indicated that left- and right-handers showed distinct recruitment patterns. These involved local interactions between brain regions as well as more widespread associations between brain systems. Despite these differences, brain-behaviour correlations highlighted that motor efficiency depended on left-sided brain regions across groups. These results suggest that skilled hand motor control relies on different neural patterns as a function of handedness whereas behavioural efficiency is linked with the left hemisphere. In conclusion, the present findings add to our understanding about principles of lateralised organisation as a function of handedness
- …