20 research outputs found

    Advanced glycation endproducts co-localize with inducible nitric oxide synthase in Alzheimer’s disease

    No full text
    Advanced glycation endproducts (AGEs), protein-bound oxidation products of sugars, have been shown to be involved in the pathophysiological processes of Alzheimer's disease (AD). AGEs induce the expression of various pro-inflammatory cytokines and the inducible nitric oxide synthase (iNOS) leading to a state of oxidative stress. AGE modification and resulting crosslinking of protein deposits such as amyloid plaques may contribute to the oxidative stress occurring in AD. The aim of this study was to immunohistochemically compare the localization of AGEs and beta-amyloid (Abeta) with iNOS in the temporal cortex (Area 22) of normal and AD brains. In aged normal individuals as well as early stage AD brains (i.e. no pathological findings in isocortical areas), a few astrocytes showed co-localization of AGE and iNOS in the upper neuronal layers, compared with no astrocytes detected in young controls. In late AD brains, there was a much denser accumulation of astrocytes co-localized with AGE and iNOS in the deeper and particularly upper neuronal layers. Also, numerous neurons with diffuse AGE but not iNOS reactivity and some AGE and iNOS-positive microglia were demonstrated, compared with only a few AGE-reactive neurons and no microglia in controls. Finally, astrocytes co-localized with AGE and iNOS as well as AGE and were found surrounding mature but not diffuse amyloid plaques in the AD brain. Our results show that AGE-positive astrocytes and microglia in the AD brain express iNOS and support the evidence of an AGE-induced oxidative stress occurring in the vicinity of the characteristic lesions of AD. Hence activation of microglia and astrocytes by AGEs with subsequent oxidative stress and cytokine release may be an important progression factor in AD

    Maillard reaction products in food as pro-inflammatory and pro-arteriosclerotic factors of degenerative diseases

    No full text
    Heating of food induces the formation of Maillard reaction products (MRPs) caused by the reaction of reducing sugars with proteins or amino acids. Analogous reactions occur in the human body, eventually forming "Advanced Glycation Endproducts" (AGEs). AGEs accumulate in aging tissues accelerating degenerative-inflammatory and proliferative processes. MRPs present in food can also directly cause inflammatory processes in the intestines and, once absorbed, would support and reinforce any inflammatory and degenerative process occurring in the body. The contribution of AGEs (and additional MRPs) in the development of diabetic complications as well as nephropathy, neuropathy, micro- and macroangiopathies is now well established. Which of the MRPs or AGEs in particular induce these cellular processes is currently unknown. Thus the exact knowledge of the chemical structures of the MRPs could help to minimize the formation of "harmful MRPs" that occur due to heating in food processing. Because MRPs play a decisive role in the successful marketing of edibles due to their characteristics as flavor components, it is important to increase the amount of innocuous and palatable MRPs, and minimize signal active pro-inflammatory MRPs by the use of defined preparation methods. It is practicable to use low-priced immunological methods for the quantitative determination of specific MRPs or AGEs. In the medical area, the knowledge of the signal active MRP/AGE structures provides the opportunity to measure their concentrations in body fluids and tissues and thus determine their influence on inflammatory and age-related degenerative processes (e. g., late diabetic complications, arteriosclerosis, degeneration of neurons). From a clinical perspective, the application of RAGE antagonists after an appropriate chemical diagnosis could be effective in supporting the treatment of affected patient groups, especially older diabetic and dialysis patients

    The carbonyl scavengers aminoguanidine and tenilsetam protect against the neurotoxic effects of methylglyoxal

    No full text
    Advanced glycation end products (AGEs) have been identified in age-related intracellular protein deposits of Alzheimer’s disease (amyloid plaques and neurofibrillary tangles) and Parkinson disease (Lewy bodies), suggesting that these protein deposits have been exposed to AGE precursors such as the reactive dicarbonyl compound methylglyoxal. In ageing tissue and under diabetic pseudohypoxia, intracellular methylglyoxal levels rise through an impairment of triosephosphate utilization. Furthermore, methylglyoxal detoxification is impaired when reduced glutathione levels are low, conditions, which have all been described in Alzheimer’s disease. However, there is less known about the toxicity of methylglyoxal, particularly about therapeutic strategies to scavenge such dicarbonyl compounds and attenuate their toxicity. In our study, extracellularly applied methylglyoxal was shown to be toxic to human neuroblastoma cells in a dose-dependent manner above concentrations of 150 µM with a LD50 of approximately 1.25 mM. Pre-incubation of methylglyoxal with a variety of carbonyl scavengers such as aminoguanidine or tenilsetam and the thiol antioxidant lipoic acid significantly reduced its toxicity. In summary, carbonyl scavengers might offer a promising therapeutic strategy to reduce the neurotoxicity of reactive carbonyl compounds, providing a potential benefit for patients with age-related neurodegenerative diseases

    Cytotoxicity of advanced glycation endproducts in human micro- and astroglial cell lines depends on the degree of protein glycation

    No full text
    Advanced glycation endproducts (AGEs) arise from the reaction of sugars with side chains and the N-terminus of proteins and are thought to be involved in the pathogenesis of several diseases by inducing oxidative stress, inflammation and cell death presumably mediated through activation of the receptor of AGE (RAGE). To address the question whether the cell damaging effect of AGE depends on the degree of its protein glycation, differential modified AGEs derived from incubating human serum albumin with increasing concentrations of methyl glyoxal were tested on cell viability, reactive oxygen species (ROS) formation, intracellular ATP levels, and activation of caspases 3/7 in two human glial cell lines, which were used as a model for human glia cells. All AGEs tested, regardless of their degree of modification, were found to induce ROS formation in both microglial (CHME-5) and astroglial cells (U373 MG), while only highly modified AGEs were able to decrease the cell viability and to induce apoptosis. This indicates that apoptotic events may be involved in the change of physiological parameters

    Toll-like receptors in neurodegeneration

    No full text
    The key roles of toll-like receptors (TLRs) as mediators of the detection and responses of immune cells to invading pathogens are well known. There are at least 13 mammalian TLRs which are integral membrane proteins with a leucine-rich extracellular domain and a cytoplasmic domain similar to that of the interleukin-1 receptor which initiates downstream signaling through kinases to activate transcription factors such as AP-1 and NFκB. TLRs are activated in glial cells (microglia, astrocytes and oligodendrocytes) and lymphocytes that infiltrate the nervous system in response to inflammation caused by infectious agents, tissue injury or autoimmune conditions. By inducing the production of pro-inflammatory cytokines and cell adhesion molecules in immune cells, TLRs may indirectly damage neurons in conditions such as ischemic stroke and multiple sclerosis. Recent findings suggest that neurons also express a subset of TLRs and that their activation promotes neuronal degeneration in experimental models of stroke and Alzheimer's disease. TLRs may also play roles in regulating the processes of neurogenesis and neurite outgrowth, suggesting roles in neuronal plasticity. A better understanding of the molecular and cellular biology of TLRs in the normal and diseased nervous system, may lead to novel approaches for preventing neuronal degeneration and promoting recovery of function in an array of neurodegenerative conditions
    corecore