9 research outputs found
Epigenetic inactivation of the splicing RNA-binding protein CELF2 in human breast cancer.
To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked DownloadHuman tumors show altered patterns of protein isoforms that can be related to the dysregulation of messenger RNA alternative splicing also observed in transformed cells. Although somatic mutations in core spliceosome components and their associated factors have been described in some cases, almost nothing is known about the contribution of distorted epigenetic patterns to aberrant splicing. Herein, we show that the splicing RNA-binding protein CELF2 is targeted by promoter hypermethylation-associated transcriptional silencing in human cancer. Focusing on the context of breast cancer, we also demonstrate that CELF2 restoration has growth-inhibitory effects and that its epigenetic loss induces an aberrant downstream pattern of alternative splicing, affecting key genes in breast cancer biology such as the autophagy factor ULK1 and the apoptotic protein CARD10. Furthermore, the presence of CELF2 hypermethylation in the clinical setting is associated with shorter overall survival of the breast cancer patients carrying this epigenetic lesion.Health Department PERIS-project of the Catalan Government (Generalitat de Catalunya)
AGAUR of the Catalan Government (Generalitat de Catalunya)
Instituto de Salud Carlos III
Ministerio de Economia y Competitividad (MINECO)
European Union (EU)
Foundation CELLEX
La Caixa Foundatio
RANK is an independent biomarker of poor prognosis in estrogen receptor-negative breast cancer and a therapeutic target in patient-derived xenografts
Despite strong preclinical data, the therapeutic benefit of the RANKL inhibitor denosumab in BC patients, beyond its bone-related effects, is unclear. Here, we investigated the prognostic value of RANK expression and its functionality in human BC. We analyzed RANK and RANKL expression in more than 1500 BC cases (777 being estrogen receptor-negative (ER-)) from four independent cohorts. We confirmed that RANK is more frequently expressed in ER- tumors, but it is also found in a subset of ER+ tumors. In ER- BC, RANK expression was independently associated with poor outcome, especially in postmenopausal patients and those who received adjuvant chemotherapy. Gene expression analyses unraveled distinct biology associated with RANK in relation to ER expression and menopause, and evidenced enhanced RANK activation in ER- postmenopausal tumors, together with regulation of metabolic pathways. Functional studies and transcriptomic analyses in ER- RANK+ patients-derived orthoxenografts demonstrated that activation of RANK signaling pathway promotes tumor cell proliferation and stemness, and regulates multiple biological processes including tumor immune surveillance and metabolism. Our results demonstrate that RANK expression is an independent poor prognosis biomarker in postmenopausal ER- BC patients and support the rational of using RANK pathway inhibitors in combination with chemotherapy in ER- BC.N
Recommended from our members
Stem cell-like transcriptional reprogramming mediates metastatic resistance to mTOR inhibition.
Inhibitors of the mechanistic target of rapamycin (mTOR) are currently used to treat advanced metastatic breast cancer. However, whether an aggressive phenotype is sustained through adaptation or resistance to mTOR inhibition remains unknown. Here, complementary studies in human tumors, cancer models and cell lines reveal transcriptional reprogramming that supports metastasis in response to mTOR inhibition. This cancer feature is driven by EVI1 and SOX9. EVI1 functionally cooperates with and positively regulates SOX9, and promotes the transcriptional upregulation of key mTOR pathway components (REHB and RAPTOR) and of lung metastasis mediators (FSCN1 and SPARC). The expression of EVI1 and SOX9 is associated with stem cell-like and metastasis signatures, and their depletion impairs the metastatic potential of breast cancer cells. These results establish the mechanistic link between resistance to mTOR inhibition and cancer metastatic potential, thus enhancing our understanding of mTOR targeting failure
Chemical and ecotoxicological assessment of sludge-based biosolids used for corn field fertilization
Stem cell-like transcriptional reprogramming mediates metastatic resistance to mTOR inhibition
Inhibitors of the mechanistic target of rapamycin (mTOR) are currently used to treat advanced metastatic breast cancer. However, whether an aggressive phenotype is sustained through adaptation or resistance to mTOR inhibition remains unknown. Here, complementary studies in human tumors, cancer models and cell lines reveal transcriptional reprogramming that supports metastasis in response to mTOR inhibition. This cancer feature is driven by EVI1 and SOX9. EVI1 functionally cooperates with and positively regulates SOX9, and promotes the transcriptional upregulation of key mTOR pathway components (REHB and RAPTOR) and of lung metastasis mediators (FSCN1 and SPARC). The expression of EVI1 and SOX9 is associated with stem cell-like and metastasis signatures, and their depletion impairs the metastatic potential of breast cancer cells. These results establish the mechanistic link between resistance to mTOR inhibition and cancer metastatic potential, thus enhancing our understanding of mTOR targeting failure
Stem cell-like transcriptional reprogramming mediates metastatic resistance to mTOR inhibition
Inhibitors of the mechanistic target of rapamycin (mTOR) are currently used to treat advanced metastatic breast cancer. However,
whether an aggressive phenotype is sustained through adaptation or resistance to mTOR inhibition remains unknown. Here,
complementary studies in human tumors, cancer models and cell lines reveal transcriptional reprogramming that supports metastasis
in response to mTOR inhibition. This cancer feature is driven by EVI1 and SOX9. EVI1 functionally cooperates with and positively
regulates SOX9, and promotes the transcriptional upregulation of key mTOR pathway components (REHB and RAPTOR) and of lung
metastasis mediators (FSCN1 and SPARC). The expression of EVI1 and SOX9 is associated with stem cell-like and metastasis signatures,
and their depletion impairs the metastatic potential of breast cancer cells. These results establish the mechanistic link between
resistance to mTOR inhibition and cancer metastatic potential, thus enhancing our understanding of mTOR targeting failure