448 research outputs found
Venus: The case for a wet origin and a runaway greenhouse
To one interested in atmospheric evolution, the most intriguing aspect of our neighboring planet Venus is its lack of water. Measurements made by Pioneer Venus and by Several Venera spacecraft indicate that the present water abundance in Venus' lower atmosphere is of the order of 20 to 200 ppmv, or 3 x 10( exp -6) to 3 x 10 (exp -5) of the amount of water in Earth's oceans. The exact depletion factor is uncertain, in part because of an unexplained vertical gradient in H2O concentration in the lowest 10 km of the venusian atmosphere, but the general scarcity of water is well established. The interesting question, then, is: Was venus deficient in water when it formed and, if not, where did its water go? The conclusion that Venus was originally wet is consistent with its large endowment of other volatiles and with the enhanced D/H ratio in the present atmosphere. The most likely mechanism by which Venus could have lost its water is by the development of a runaway or moist greenhouse atmosphere followed by photodissociation of water vapor and escape of hydrogen to space. Climate model calculations that neglect cloud albedo feedback predict the existence of two critical transitions in atmospheric behavior at high solar fluxes: (1) at a solar flux of approximately 1.1 times the value at Earth's orbit, S(o), the abundance of stratospheric water vapor increases dramatically, permitting rapid escape of hydrogen to space (termed a moist greenhouse) and (2) at a solar flux of approximately 1.4 S(o), the oceans vaporize entirely, creating a true runaway greenhouse. If cloudiness increases at high surface temperatures, as seems likely, and if the dominant effect of clouds is to cool the planet by reflecting incident solar radiation, the actual solar flux required to create moist or runaway conditions would be higher than the values quoted above. Early in solar system history, solar luminosity was about 25 percent to 30 percent less than today, putting the flux at Venus' orbit in the range of 1.34 S(o) to 1.43 S(o). Thus, it is possible that Venus had liquid water on its surface for several hundred million years following its formation. Paradoxically, this might have facilitated water loss by sequestering atmospheric CO2 in carbonate rocks and by providing an effective medium for surface oxidation
Evolution of the atmosphere
Theories on the origin of the Earth atmosphere and chemical composition are presented. The role of oxygenic photosynthesis on the determination of the Earth's origin is discussed. The research suggests that further analysis of the geologic record is needed to more accurately estimate the history of atmospheric oxygen
Possible solutions to the problem of channel formation on early Mars
A warm climate on early Mars would provide a natural, although not unique, explanation for the presence of fluvial networks on the ancient, heavily cratered terrains. Explaining how the climate could have been kept warm, however, is not easy. The idea that the global average surface temperature, T(sub s), could have been kept warm by a dense, CO2 atmosphere supplied by volcanism or impacts is no longer viable. It was shown that CO2 cloud formation should have kept T(sub s) well below freezing until approximately 2 b.y. ago, when the Sun had brightened to at least 86 percent of its present value. Warm equatorial regions on an otherwise cold planet seem unlikely because atmospheric CO2 would probably condense out at the poles. Warming by impact-produced dust in the atmosphere seems unlikely because the amount of warming expected for silicate dust particles is relatively small. Greenhouse warming by high altitude CO2 ice clouds seems unlikely because such are poor absorbers of infrared radiation at most wavelengths. Warming by atmospheric NH3 seems unlikely because NH3 is readily photodissociated and because N may have been in short supply as consequence of impact erosion and the high solubility of NH3. A brighter, mass-losing young Sun seems unlikely because stellar winds of the required strength were not observed on other solar-type stars. In short, most of the explanations for a warm Martian paleoclimate that were proposed in the past seem unlikely. One possibility that seems feasible from radiative/photochemical standpoint is that CH4 and associated hydrocarbon gases and particles contributed substantially to the greenhouse effect on early Mars. Methane is photochemically more stable than NH3 and the gases and particles that can be formed from it are all good absorbers of infrared radiation. The idea of a CH4-rich Martian paleoatmosphere was suggested a long time ago but has fallen out of favor because of perceived difficulties in maintaining a CH4-rich atmosphere. In particular, it is not obvious where the CH4 might come from, since volcanic gases (on Earth, at least) contain very little CH4. This difficulty could be largely overcome if early Mars was inhabited by microorganisms. Then, methanogenic bacteria living in sediments could presumably have supplied CH4 to the atmosphere in copious quantities
Abiotic formation of O2 and O3 in high-CO2 terrestrial atmospheres
Previous research has indicated that high amounts of ozone (O3) and oxygen
(O2) may be produced abiotically in atmospheres with high concentrations of
CO2. The abiotic production of these two gases, which are also characteristic
of photosynthetic life processes, could pose a potential "false-positive" for
remote-sensing detection of life on planets around other stars.We show here
that such false positives are unlikely on any planet that possesses abundant
liquid water, as rainout of oxidized species onto a reduced planetary surface
should ensure that atmospheric H2 concentrations remain relatively high, and
that O2 and O3 remain low. Our aim is to determine the amount of O3 and O2
formed in a high CO2 atmosphere for a habitable planet without life. We use a
photochemical model that considers hydrogen (H2) escape and a detailed hydrogen
balance to calculate the O2 and O3 formed on planets with 0.2 of CO2 around the
Sun, and 0.02, 0.2 and 2 bars of CO2 around a young Sun-like star with higher
UV radiation. The concentrations obtained by the photochemical model were used
as input in a radiative transfer model that calculated the spectra of the
modeled planets. The O3 and O2 concentrations in the simulated planets are
extremely small, and unlikely to produce a detectable signature in the spectra
of those planets. We conclude that with a balanced hydrogen budget, and for
planets with an active hydrological cycle, abiotic formation of O2 and O3 is
unlikely to create a possible false positive for life detection in either the
visible/near-infrared or mid-infrared wavelength regimes.Comment: 27 pages, 15 figures, Astronomy & Astrophysics accepte
Abiotic O Levels on Planets around F, G, K, and M Stars: Possible False Positives for Life?
In the search for life on Earth-like planets around other stars, the first
(and likely only) information will come from the spectroscopic characterization
of the planet's atmosphere. Of the countless number of chemical species
terrestrial life produces, only a few have the distinct spectral features and
the necessary atmospheric abundance to be detectable. The easiest of these
species to observe in Earth's atmosphere is O (and its photochemical
byproduct, O). But O can also be produced abiotically by photolysis
of CO, followed by recombination of O atoms with each other. CO is
produced in stoichiometric proportions. Whether O and CO can accumulate
to appreciable concentrations depends on the ratio of far-UV to near-UV
radiation coming from the planet's parent star and on what happens to these
gases when they dissolve in a planet's oceans. Using a one-dimensional
photochemical model, we demonstrate that O derived from CO
photolysis should not accumulate to measurable concentrations on planets around
F- and G-type stars. K-star, and especially M-star planets, however, may build
up O because of the low near-UV flux from their parent stars, in
agreement with some previous studies. On such planets, a 'false positive' for
life is possible if recombination of dissolved CO and O in the oceans is
slow and if other O sinks (e.g., reduced volcanic gases or dissolved
ferrous iron) are small. O, on the other hand, could be detectable at UV
wavelengths ( < 300 nm) for a much broader range of boundary
conditions and stellar types.Comment: 20 pages text, 9 figure
Habitable planets around the star Gl 581?
Radial velocity surveys are now able to detect terrestrial planets at
habitable distance from M-type stars. Recently, two planets with minimum masses
below 10 Earth masses were reported in a triple system around the M-type star
Gliese 581. Using results from atmospheric models and constraints from the
evolution of Venus and Mars, we assess the habitability of planets Gl 581c and
Gl 581d and we discuss the uncertainties affecting the habitable zone (HZ)
boundaries determination. We provide simplified formulae to estimate the HZ
limits that may be used to evaluate the astrobiological potential of
terrestrial exoplanets that will hopefully be discovered in the near future.
Planets Gl 581c and 'd' are near, but outside, what can be considered as the
conservative HZ. Planet 'c' receives 30% more energy from its star than Venus
from the Sun, with an increased radiative forcing caused by the spectral energy
distribution of Gl 581. Its habitability cannot however be positively ruled out
by theoretical models due to uncertainties affecting cloud properties.
Irradiation conditions of planet 'd' are comparable with those of early Mars.
Thanks to the warming effect of CO2-ice clouds planet 'd' might be a better
candidate for the first exoplanet known to be potentially habitable. A mixture
of various greenhouse gases could also maintain habitable conditions on this
planet.Comment: Astronomy and Astrophysics (2007) accepted for publicatio
The case for a wet, warm climate on early Mars
Arguments are presented in support of the idea that Mars possessed a dense CO2 atmosphere and a wet, warm climate early in its history. The plausibility of a CO2 greenhouse is tested by formulating a simple model of the CO2 geochemical cycle on early Mars. By scaling the rate of silicate weathering on Earth, researchers estimated a weathering time constant of the order of several times 10 to the 7th power years for early Mars. Thus, a dense atmosphere could have existed for a geologically significant time period (approx. 10 to the 9th power years) only if atmospheric CO2 was being continuously resupplied. The most likely mechanism by which this could have been accomplished is the thermal decomposition of carbonate rocks induced directly or indirectly by intense, global scale volcanism
A carbon dioxide/methane greenhouse atmosphere on early Mars
One explanation for the formation of fluvial surface features on early Mars is that the global average surface temperature was maintained at or above the freezing point of water by the greenhouse warming of a dense CO2 atmosphere; however, Kasting has shown that CO2 alone is insufficient because the formation of CO2 clouds reduces the magnitude of the greenhouse effect. It is possible that other gases, such as NH3 and CH4, were present in the early atmosphere of Mars and contributed to the greenhouse effect. Kasting et al. investigated the effect of NH3 in a CO2 atmosphere and calculated that an NH3 mixing ratio of approximately 5 x 10 (exp -4) by volume, combined with a CO2 partial pressure of 4-5 bar, could generate a global average surface temperature of 273 K near 3.8 b.y. ago when the fluvial features are believed to have formed. Atmospheric NH3 is photochemically converted to N2 by ultraviolet radiation at wavelengths shortward of 230 nm; maintenance of sufficient NH3 concentrations would therefore require a source of NH3 to balance the photolytic destruction. We have used a one-dimensional photochemical model to estimate the magnitude of the NH3 source required to maintain a given NH3 concentration in a dense CO2 atmosphere. We calculate that an NH3 mixing ratio of 10(exp -4) requires a flux of NH3 on the order of 10(exp 12) molecules /cm-s. This figure is several orders of magnitude greater than estimates of the NH3 flux on early Mars; thus it appears that NH3 with CO2 is not enough to keep early Mars warm
Is Gliese 581d habitable? Some constraints from radiative-convective climate modeling
The recently discovered exoplanet Gl581d is extremely close to the outer edge
of its system's habitable zone, which has led to much speculation on its
possible climate. We have performed a range of simulations to assess whether,
given simple combinations of chemically stable greenhouse gases, the planet
could sustain liquid water on its surface. For best estimates of the surface
gravity, surface albedo and cloud coverage, we find that less than 10 bars of
CO2 is sufficient to maintain a global mean temperature above the melting point
of water. Furthermore, even with the most conservative choices of these
parameters, we calculate temperatures above the water melting point for CO2
partial pressures greater than about 40 bar. However, we note that as Gl581d is
probably in a tidally resonant orbit, further simulations in 3D are required to
test whether such atmospheric conditions are stable against the collapse of CO2
on the surface.Comment: 9 pages, 11 figures. Accepted for publication in Astronomy &
Astrophysic
- …