5,026 research outputs found

    Unprecedented layered coordination polymers of dithiolene group 10 metals: Magnetic and electrical properties

    Full text link
    One-pot reactions between Ni(ii), Pd(ii) or Pt(ii) salts and 3,6-dichloro-1,2-benzenedithiol (HSC6H2Cl2SH) in KOH medium under argon lead to a series of bis-dithiolene coordination polymers. X-ray analysis shows the presence of a common square planar complex [M(SC6H2Cl2S)2]2- linked to potassium cations forming either a two-dimensional coordination polymer network for {[K2(μ-H2O)2(μ-thf)(thf)2][M(SC6H2Cl2S)2]}n [M = Ni (1) and Pd (2)] or a one-dimensional coordination polymer for {[K2(μ-H2O)2(thf)6][Pt(SC6H2Cl2S)2]}n (3). In 3 the coordination environment of the potassium ions may slightly change leading to the two-dimensional coordination polymer {[K2(μ-H2O)(μ-thf)2][Pt(SC6H2Cl2S)2]}n (4) that crystallizes together with 3. The physical characterization of compounds 1-3 show similar trends, they are diamagnetic and behave as semiconductorsWe thank financial support from MICINN (MAT2013-46753-C2-1-P, CTQ2014-52758-P and MAT2014-56143-R) and Generalitat Valenciana (PrometeoII/2014/076

    Les recherches de Leibniz au sujet de la langue basque

    Get PDF
    La mentalité puissante de Leibniz, quoique connue pour ses écrits philosophiques et mathématiques, a embrassé presque tous les domaines de la connaissance, dont la linguistique. Dans le domaine de ses études linguistiques, en particulier, dans celui de sa recherche sur les diverses langues historiques et naturelles, Leibniz a porté un intérêt exclusif à connaître la nature et les caractéristiques de la langue basque. Suivant la logique de sa thèse de l'"harmonie préétablie", Leibniz faisait la recherche au sujet de l'harmonie parmi les diverses langues du monde, où il a trouvé un intérêt spécial à essayer de pénétrer les mystères du vieil euscarien (basque) qui s'avérait si différent du reste des langues européennes

    A young double stellar cluster in a HII region, emerging from its parent molecular cloud

    Full text link
    We report the properties of a new young double stellar cluster in the region towards IRAS 07141-0920 contained in the HII region Sh2-294. High-resolution optical UBVRI and Halpha images, near-infrared JHKs and H2 filter images were used to make photometric and morphological studies of the point sources and the nebula seen towards Sh2-294. The optical images reveal an emission nebula with very rich morphological details, composed mainly of UV scattered light and of Halpha emission. Contrasting with the bright parts of the nebula, opaque, elongated patches are seen. Our optical photometry confirms that the illuminator of the nebula is likely to be a B0.5V star located at a distance of about 3.2 kpc. Our near-IR images reveal an embedded cluster, extending for about 2 pc and exhibiting sub-clustering: a denser, more condensed, sub-cluster surrounding the optical high-mass B0.5V illuminator star; and a more embedded, optically invisible, sub-cluster located towards the eastern, dark part of the nebula and including the luminous MSX source G224.1880+01.2407, a massive protostellar candidate that could be the origin of jets and extended features seen at 2.12 micron. The double cluster appears to be clearing the remaining molecular material of the parent cloud, creating patches of lower extinction and allowing some of the least reddened members to be detected in the optical images. We find 12 MS and 143 PMS members using 3 different methods: comparison with isochrones in optical colour-magnitude diagrams, detection of near-IR excess, and presence of Halpha emission. The most massive star fits a 4 Myr post-MS isochrone. The age of the optically selected PMS population is estimated to be 7-8 Myr. The IR-excess population shows sub-clustering on scales as small as 0.23 pc and is probably much younger.Comment: 15 pages, 16 figure

    Chemical abundances of 1111 FGK stars from the HARPS GTO planet search program II: Cu, Zn, Sr, Y, Zr, Ba, Ce, Nd and Eu

    Full text link
    To understand the formation and evolution of the different stellar populations within our Galaxy it is essential to combine detailed kinematical and chemical information for large samples of stars. We derive chemical abundances of Cu, Zn, Sr, Y, Zr, Ba, Ce, Nd and Eu for a large sample of more than 1000 FGK dwarf stars with high-resolution (RR \sim\,115000) and high-quality spectra from the HARPS-GTO program. The abundances are derived by a standard Local Thermodinamyc Equilibrium (LTE) analysis using measured Equivalent Widths (EWs) injected to the code MOOG and a grid of Kurucz ATLAS9 atmospheres. We find that thick disk stars are chemically disjunct for Zn and Eu and also show on average higher Zr but lower Ba and Y when compared to the thin disk stars. We also discovered that the previously identified high-α\alpha metal-rich population is also enhanced in Cu, Zn, Nd and Eu with respect to the thin disk but presents Ba and Y abundances lower on average, following the trend of thick disk stars towards higher metallities and further supporting the different chemical composition of this population. The ratio of heavy-s to light-s elements of thin disk stars presents the expected behaviour (increasing towards lower metallicities) and can be explained by a major contribution of low-mass AGB stars for s-process production at disk metallicities. However, the opposite trend found for thick disk stars suggests that intermediate-mass AGB stars played an important role in the enrichment of the gas from where these stars formed. Previous works in the literature also point to a possible primary production of light-s elements at low metallicities to explain this trend. Finally, we also find an enhancement of light-s elements in the thin disk at super solar metallicities which could be caused by the contribution of metal-rich AGB stars. (short version)Comment: 20 pages, 19 figures, accepted by A&

    Searching for the signatures of terrestrial planets in F-, G-type main-sequence stars

    Full text link
    We have studied the volatile-to-refractory abundance ratios to investigate their possible relation with the low-mass planetary formation. We present a fully differential chemical abundance analysis using high-quality HARPS and UVES spectra of 61 late F- and early G-type main-sequence stars, 29 are planet hosts and 32 are stars without detected planets. As the previous sample of solar analogs, these stars slightly hotter than the Sun also provide very accurate Galactic chemical abundance trends in the metallicity range 0.3<[Fe/H]<0.4-0.3<{\rm [Fe/H]}<0.4. Stars with and without planets show similar mean abundance ratios. Moreover, when removing the Galactic chemical evolution effects, these mean abundance ratios, Δ[X/Fe]SUNSTARS\Delta {\rm [X/Fe]_{SUN-STARS}}, versus condensation temperature tend to exhibit less steep trends with nearly null or slightly negative slopes. We have also analyzed a sub-sample of 26 metal-rich stars, 13 with and 13 without known planets and find the similar, although not equal, abundance pattern with negative slopes for both samples of stars with and without planets. Using stars at S/N 550\ge 550 provides equally steep abundance trends with negative slopes for both stars with and without planets. We revisit the sample of solar analogs to study the abundance patterns of these stars, in particular, 8 stars hosting super-Earth-like planets. Among these stars having very low-mass planets, only four of them reveal clear increasing abundance trends versus condensation temperature. Finally, we have compared these observed slopes with those predicted using a simple model which enables us to compute the mass of rocks which have formed terrestrial planets in each planetary system. We do not find any evidence supporting the conclusion that the volatile-to-refractory abundance ratio is related to the presence of rocky planets.Comment: Accepted for publication in A&

    CNO behaviour in planet-harbouring stars. II. Carbon abundances in stars with and without planets using the CH band

    Full text link
    Context. Carbon, oxygen and nitrogen (CNO) are key elements in stellar formation and evolution, and their abundances should also have a significant impact on planetary formation and evolution. Aims. We present a detailed spectroscopic analysis of 1110 solar-type stars, 143 of which are known to have planetary companions. We have determined the carbon abundances of these stars and investigate a possible connection between C and the presence of planetary companions. Methods. We used the HARPS spectrograph to obtain high-resolution optical spectra of our targets. Spectral synthesis of the CH band at 4300\AA was performed with the spectral synthesis codes MOOG and FITTING. Results. We have studied carbon in several reliable spectral windows and have obtained abundances and distributions that show that planet host stars are carbon rich when compared to single stars, a signature caused by the known metal-rich nature of stars with planets. We find no different behaviour when separating the stars by the mass of the planetary companion. Conclusions. We conclude that reliable carbon abundances can be derived for solar-type stars from the CH band at 4300\AA. We confirm two different slope trends for [C/Fe] with [Fe/H] because the behaviour is opposite for stars above and below solar values. We observe a flat distribution of the [C/Fe] ratio for all planetary masses, a finding that apparently excludes any clear connection between the [C/Fe] abundance ratio and planetary mass.Comment: 10 pages, 10 figures. Accepted to A&

    C/O vs Mg/Si ratios in solar type stars: The HARPS sample

    Full text link
    Aims. We present a detailed study of the Mg/Si and C/O ratios and their importance in determining the mineralogy of planetary companions. Methods. Using 499 solar-like stars from the HARPS sample, we determine C/O and Mg/Si elemental abundance ratios to study the nature of the possible planets formed. We separated the planetary population in low-mass planets ( < 30 M\rm M_{\odot}) and high-mass planets ( > 30 M\rm M_{\odot}) to test for possible relation with the mass. Results. We find a diversity of mineralogical ratios that reveal the different kinds of planetary systems that can be formed, most of them dissimilar to our solar system. The different values of the Mg/Si and C/O ratios can determine different composition of planets formed. We found that 100\% of our planetary sample present C/O < 0.8. 86\% of stars with high-mass companions present 0.8 > C/O > 0.4, while 14\% present C/O values lower than 0.4. Regarding Mg/Si, all stars with low-mass planetary companion showed values between 1 and 2, while 85% of the high-mass companion sample does. The other 15\% showed Mg/Si values below 1. No stars with planets were found with Mg/Si > 2. Planet hosts with low-mass companions present C/O and Mg/Si ratios similar to those found in the Sun, whereas stars with high-mass companions have lower C/O.Comment: 9 pages, 12 figues. Accepted in A&
    corecore