181 research outputs found

    Enhanced aging properties of HKUST-1 in hydrophobic mixed-matrix membranes for ammonia adsorption.

    Get PDF
    Metal-organic frameworks (MOFs) in their free powder form have exhibited superior capacities for many gases when compared to other materials, due to their tailorable functionality and high surface areas. Specifically, the MOF HKUST-1 binds small Lewis bases, such as ammonia, with its coordinatively unsaturated copper sites. We describe here the use of HKUST-1 in mixed-matrix membranes (MMMs) prepared from polyvinylidene difluoride (PVDF) for the removal of ammonia gas. These MMMs exhibit ammonia capacities similar to their hypothetical capacities based on the weight percent of HKUST-1 in each MMM. HKUST-1 in its powder form is unstable toward humid conditions; however, upon exposure to humid environments for prolonged periods of time, the HKUST-1 MMMs exhibit outstanding structural stability, and maintain their ammonia capacity. Overall, this study has achieved all of the critical and combined elements for real-world applications of MOFs: high MOF loadings, fully accessible MOF surfaces, enhanced MOF stabilization, recyclability, mechanical stability, and processability. This study is a critical step in advancing MOFs to a stable, usable, and enabling technology

    An examination of the frog heart assay and its potential to detect cardioactivity

    Get PDF
    Thesis (B.S.) in Chemistry -- University of Illinois at Urbana-Champaign, 1988.Bibliography: leaves 40-41.Microfiche of typescript. [Urbana, Ill.]: Photographic Services, University of Illinois, U of I Library, [1988]. 2 microfiches (48 frames): negative

    Effects of Copper Exchange Levels on Complexation of Ammonia in Cu (II)-exchanged X Zeolite

    Get PDF
    Copper (II)-exchanged faujasite-X zeolites at various loadings of copper per unit cell of zeolites were prepared and then exposed to ammonia. The copper ammine complexes of the various copper levels per unit cell were characterized and analyzed by a combination of diffuse reflectance, X-ray powder diffraction, FT-infrared spectroscopy, electron paramagnetic resonance and nuclear magnetic resonance spectroscopic methods. At low copper exchange levels (<5 copper atoms per unit cell), the major complex is [Cu(Ozeo)2(NH3)2]2+ and it is strongly bound to the zeolite framework walls at single four ring sites (site III). Above five copper atoms per unit cell, the major complex becomes [Cu(NH3)4]2+ and it is least interacting with the zeolite framework walls. The [Cu(NH3)4]2+ complex which was formed at higher copper levels per unit cell was most favoured by the presence of maximal amount of ammonia.Keywords: Cation Exchange, Catalysis, Copper, Complexation, Copper AmminesAttached PDF and Supplementary Fil

    A Novel Mouse Model for Non-Invasive Single Marker Tracking of Mammary Stem Cells In Vivo Reveals Stem Cell Dynamics throughout Pregnancy

    Get PDF
    Mammary stem cells (MaSCs) play essential roles for the development of the mammary gland and its remodeling during pregnancy. However, the precise localization of MaSCs in the mammary gland and their regulation during pregnancy is unknown. Here we report a transgenic mouse model for luciferase-based single marker detection of MaSCs in vivo that we used to address these issues. Single transgene expressing mammary epithelial cells were shown to reconstitute mammary glands in vivo while immunohistochemical staining identified MaSCs in basal and luminal locations, with preponderance towards the basal position. By quantifying luciferase expression using bioluminescent imaging, we were able to track MaSCs non-invasively in individual mice over time. Using this model to monitor MaSC dynamics throughout pregnancy, we found that MaSCs expand in both total number and percentage during pregnancy and then drop down to or below baseline levels after weaning. However, in a second round of pregnancy, this expansion was not as extensive. These findings validate a powerful system for the analysis of MaSC dynamics in vivo, which will facilitate future characterization of MaSCs during mammary gland development and breast cancer

    Open social mapping participatory: Modeling of social systems

    Get PDF
    Open Social Mapping is an emerging paradigm for stakeholder engagement in systemic design projects. It combines actor mapping, network modelling and analysis, customer relationship management systems, and crowdsourcing in a method that allows stakeholders to map themselves within a system. Based on observations of some early examples of this tool and two case studies led by the authors, we describe some of the opportunities and challenges of Open Social Mapping. Open Social Maps re-center the stakeholder in the systemic design process, helping designers make data- driven decisions with real-time data while decentralizing systemic design by facilitating stakeholder access and agency to the design process. However, we must address issues of data collection and maintenance, privacy, power and privilege, bad actors, interoperability, and information quality for this tool to become mainstream

    Scalable continuous production of high quality HKUST-1 via conventional and microwave heating

    Get PDF
    Metal Organic Frameworks (MOFs) are materials with large surface areas and internal volumes, which result in a number of useful properties for applications such as catalysis, separations and gas storage. However, MOFs are challenging to produce at a large scale creating a barrier to becoming truly viable alternatives to current technologies. As a first step towards industrial scale manufacture, we demonstrate here the first scalable, continuous synthesis of high-quality HKUST-1 using ethanol as the solvent, resulting in a greener and potentially much more economical process (as solvent does not decompose and thus can be recycled). We also show that microwave heating can be used to produce HKUST-1 continuously, in timescales several orders of magnitude faster than by conventional heating. We demonstrate a novel approach to microwave assisted synthesis of HKUST-1, based on a recycle loop with microwave irradiation, which is scalable under both batch and continuous conditions and allows an independent control of microwave irradiation regime and the overall reaction time. The use of microwave heating for continuous production of HKUST-1 enabled STY of 400,000 kg m−3 d−1, which is higher than any production rates reported to date, even when using the preferred high yield solvent, DMF, and is 17 times more than the highest production rates reported to date for HKUST-1 in ‘ethanol-only’ systems

    Accelerated Postnatal Growth Increases Lipogenic Gene Expression and Adipocyte Size in Low–Birth Weight Mice

    Get PDF
    OBJECTIVE: To characterize the hormonal milieu and adipose gene expression in response to catch-up growth (CUG), a growth pattern associated with obesity and diabetes risk, in a mouse model of low birth weight (LBW). RESEARCH DESIGN AND METHODS: ICR mice were food restricted by 50% from gestational days 12.5–18.5, reducing offspring birth weight by 25%. During the suckling period, dams were either fed ad libitum, permitting CUG in offspring, or food restricted, preventing CUG. Offspring were killed at age 3 weeks, and gonadal fat was removed for RNA extraction, array analysis, RT-PCR, and evaluation of cell size and number. Serum insulin, thyroxine (T4), corticosterone, and adipokines were measured. RESULTS: At age 3 weeks, LBW mice with CUG (designated U-C) had body weight comparable with controls (designated C-C); weight was reduced by 49% in LBW mice without CUG (designated U-U). Adiposity was altered by postnatal nutrition, with gonadal fat increased by 50% in U-C and decreased by 58% in U-U mice (P less than 0.05 vs. C-C mice). Adipose expression of the lipogenic genes Fasn, AccI, Lpin1, and Srebf1 was significantly increased in U-C compared with both C-C and U-U mice (P less than 0.05). Mitochondrial DNA copy number was reduced by greater than 50% in U-C versus U-U mice (P = 0.014). Although cell numbers did not differ, mean adipocyte diameter was increased in U-C and reduced in U-U mice (P less than 0.01). CONCLUSIONS: CUG results in increased adipose tissue lipogenic gene expression and adipocyte diameter but not increased cellularity, suggesting that catch-up fat is primarily associated with lipogenesis rather than adipogenesis in this murine model

    Random subwindows and extremely randomized trees for image classification in cell biology

    Get PDF
    Background: With the improvements in biosensors and high-throughput image acquisition technologies, life science laboratories are able to perform an increasing number of experiments that involve the generation of a large amount of images at different imaging modalities/scales. It stresses the need for computer vision methods that automate image classification tasks. Results: We illustrate the potential of our image classification method in cell biology by evaluating it on four datasets of images related to protein distributions or subcellular localizations, and red-blood cell shapes. Accuracy results are quite good without any specific pre-processing neither domain knowledge incorporation. The method is implemented in Java and available upon request for evaluation and research purpose. Conclusion: Our method is directly applicable to any image classification problems. We foresee the use of this automatic approach as a baseline method and first try on various biological image classification problems
    corecore