648 research outputs found

    Designing IS service strategy: an information acceleration approach

    Get PDF
    Information technology-based innovation involves considerable risk that requires insight and foresight. Yet, our understanding of how managers develop the insight to support new breakthrough applications is limited and remains obscured by high levels of technical and market uncertainty. This paper applies a new experimental method based on “discrete choice analysis” and “information acceleration” to directly examine how decisions are made in a way that is behaviourally sound. The method is highly applicable to information systems researchers because it provides relative importance measures on a common scale, greater control over alternate explanations and stronger evidence of causality. The practical implications are that information acceleration reduces the levels of uncertainty and generates a more accurate rationale for IS service strategy decisions

    Sharp gene pool transition in a population affected by phenotype-based selective hunting

    Full text link
    We use a microscopic model of population dynamics, a modified version of the well known Penna model, to study some aspects of microevolution. This research is motivated by recent reports on the effect of selective hunting on the gene pool of bighorn sheep living in the Ram Mountain region, in Canada. Our model finds a sharp transition in the structure of the gene pool as some threshold for the number of animals hunted is reached.Comment: 5 pages, 4 figure

    Host density drives viral, but not trypanosome, transmission in a key pollinator

    Get PDF
    Supplemental feeding of wildlife populations can locally increase the density of individuals, which may in turn impact disease dynamics. Flower strips are a widely used intervention in intensive agricultural systems to nutritionally support pollinators such as bees. Using a controlled experimental semi-field design, we asked how density impacts transmission of a virus and a trypanosome parasite in bumblebees. We manipulated bumblebee density by using different numbers of colonies within the same area of floral resource. In high-density compartments, slow bee paralysis virus was transmitted more quickly, resulting in higher prevalence and level of infection in bumblebee hosts. By contrast, there was no impact of density on the transmission of the trypanosome Crithidia bombi, which may reflect the ease with which this parasite is transmitted. These results suggest that agri-environment schemes such as flower strips, which are known to enhance the nutrition and survival of bumblebees, may also have negative impacts on pollinators through enhanced disease transmission. Future studies should assess how changing the design of these schemes could minimize disease transmission and thus maximise their health benefits to wild pollinators

    Continental-scale patterns of pathogen prevalence: a case study on the corncrake

    Get PDF
    Pathogen infections can represent a substantial threat to wild populations, especially those already limited in size. To determine how much variation in the pathogens observed among fragmented populations is caused by ecological factors, one needs to examine systems where host genetic diversity is consistent among the populations, thus controlling for any potentially confounding genetic effects. Here, we report geographic variation in haemosporidian infection among European populations of corncrake. This species now occurs in fragmented populations, but there is little genetic structure and equally high levels of genetic diversity among these populations. We observed a longitudinal gradient of prevalence from western to Eastern Europe negatively correlated with national agricultural yield, but positively correlated with corncrake census population sizes when only the most widespread lineage is considered. This likely reveals a possible impact of local agriculture intensity, which reduced host population densities in Western Europe and, potentially, insect vector abundance, thus reducing the transmission of pathogens. We conclude that in the corncrake system, where metapopulation dynamics resulted in variations in local census population sizes, but not in the genetic impoverishment of these populations, anthropogenic activity has led to a reduction in host populations and pathogen prevalence

    Containing the Not-Invented-Here Syndrome in external knowledge absorption and open innovation: The role of indirect countermeasures

    Get PDF
    This paper builds new theory and provides supporting evidence to contain the Not-Invented-Here Syndrome (NIHS) – a persistent decision-making error arising from an attitude-based bias against external knowledge. Conceptually, we draw on the 4i framework of organizational learning to develop a novel process perspective on NIHS. This allows us not only to unpack how and where NIHS impedes organizational learning, but also to identify the key requirements for effective NIHS countermeasures. Importantly, countermeasures fall into two categories: those that seek to change the negative attitude directly (direct NIHS countermeasures) and those that seek to attenuate the behavioral impact of negative attitudes without addressing the attitudes as such (indirect NIHS countermeasures). While the evidence base on direct NIHS countermeasures has grown over the last decade, indirect NIHS countermeasures have received little research attention. To address this gap, we adopt a mixed methods research design composed of two complementary empirical studies – the first qualitative and the second quantitative. Study 1 explores the prevalence of distinct NIHS countermeasures in collaborative R&D practice. Based on 32 interviews and three focus group meetings with R&D employees, we find that a broad array of primarily direct NIHS countermeasures is employed in R&D practice. Study 2 addresses the scarcity of scholarly and managerial insights on indirect NIHS countermeasures by testing the effectiveness of perspective taking as a debiasing technique to contain negative attitudes at the level of the individual. Based on quantitative survey data from 565 global R&D projects, it provides empirical evidence not only for the prevalence and negative effects of NIHS on project success as mediated by external knowledge absorption, but also for the effectiveness of perspective taking as an exemplary indirect NIHS countermeasure

    Attack transient of a flue organ pipe

    Get PDF

    Social effects of territorial neighbours on the timing of spring breeding in North American red squirrels

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this recordOrganisms can affect one another’s phenotypes when they socially interact. Indirect genetic effects occur when an individual’s phenotype is affected by genes expressed in another individual. These heritable effects can enhance or reduce adaptive potential, thereby accelerating or reversing evolutionary change. Quantifying these social effects is therefore crucial for our understanding of evolution, yet estimates of indirect genetic effects in wild animals are limited to dyadic interactions. We estimated indirect phenotypic and genetic effects, and their covariance with direct effects, for the date of spring breeding in North American red squirrels (Tamiasciurus hudsonicus) living in an array of territories of varying spatial proximity. Additionally, we estimated indirect effects and the strength of selection at low and high population densities. Social effects of neighbours on the date of spring breeding were different from zero at high population densities but not at low population densities. Indirect phenotypic effects accounted for a larger amount of variation in the date of breeding than differences attributable to the among-individual variance, suggesting social interactions are important for determining breeding dates. The genetic component to these indirect effects was however not statistically significant. We therefore showcase a powerful and flexible method that will allow researchers working in organisms with a range of social systems to estimate indirect phenotypic and genetic effects, and demonstrate the degree to which social interactions can influence phenotypes, even in a solitary species

    The gradient of the reinforcement landscape influences sensorimotor learning

    Get PDF
    © 2019 Cashaback et al. Consideration of previous successes and failures is essential to mastering a motor skill. Much of what we know about how humans and animals learn from such reinforcement feedback comes from experiments that involve sampling from a small number of discrete actions. Yet, it is less understood how we learn through reinforcement feedback when sampling from a continuous set of possible actions. Navigating a continuous set of possible actions likely requires using gradient information to maximize success. Here we addressed how humans adapt the aim of their hand when experiencing reinforcement feedback that was associated with a continuous set of possible actions. Specifically, we manipulated the change in the probability of reward given a change in motor action-the reinforcement gradient-to study its influence on learning. We found that participants learned faster when exposed to a steep gradient compared to a shallow gradient. Further, when initially positioned between a steep and a shallow gradient that rose in opposite directions, participants were more likely to ascend the steep gradient. We introduce a model that captures our results and several features of motor learning. Taken together, our work suggests that the sensorimotor system relies on temporally recent and spatially local gradient information to drive learning
    corecore