116 research outputs found

    Consortin, a trans-Golgi network cargo receptor for the plasma membrane targeting and recycling of connexins

    Get PDF
    Targeting of numerous transmembrane proteins to the cell surface is thought to depend on their recognition by cargo receptors that interact with the adaptor machinery for anterograde traffic at the distal end of the Golgi complex. We report here on consortin, a novel integral membrane protein that is predicted to be intrinsically disordered, i.e. that contains large segments whose native state is unstructured. We identified consortin as a binding partner of connexins, the building blocks of gap junctions. Consortin is located at the trans-Golgi network (TGN), in tubulovesicular transport organelles, and at the plasma membrane. It directly interacts with the TGN clathrin adaptors GGA1 and GGA2, and disruption of this interaction by expression of a consortin mutant lacking the acidic cluster-dileucine (DXXLL) GGA interaction motif causes an intracellular accumulation of several connexins. RNA interference-mediated silencing of consortin expression in HeLa cells blocks the cell surface targeting of these connexins, which accumulate intracellularly, whereas partial depletion and redistribution of the consortin pool slows down the intracellular degradation of gap junction plaques. Altogether, our results show that, by studying connexin trafficking, we have identified the first TGN cargo receptor for the targeting of transmembrane proteins to the plasma membrane. The identification of consortin provides in addition a potential target for therapies aimed at diseases in which connexin traffic is altered, including cardiac ischemia, peripheral neuropathies, cataracts and hearing impairment. Sequence accession numbers. GenBank: Human CNST cDNA, NM_152609; mouse Cnst cDNA, NM_14610

    Interleukin-1 receptor antagonist is upregulated during diet-induced obesity and regulates insulin sensitivity in rodents

    Get PDF
    Aims/hypothesis: The IL-1 receptor antagonist (IL-1Ra) is an anti-inflammatory cytokine known to antagonise the actions of IL-1. We have previously shown that IL-1Ra is markedly upregulated in the serum of obese patients, is correlated with BMI and insulin resistance, and is overexpressed in the white adipose tissue (WAT) of obese humans. The aim of this study was to examine the role of IL-1Ra in the regulation of glucose homeostasis in rodents. Methods: We assessed the expression of genes related to IL-1 signalling in the WAT of mice fed a high-fat diet, as well as the effect of Il1rn (the gene for IL-1Ra) deletion and treatment with IL-1Ra on glucose homeostasis in rodents. Results: We show that the expression of Il1rn and the gene encoding the inhibitory type II IL-1 receptor was upregulated in diet-induced obesity. The blood insulin:glucose ratio was significantly lower in Il1rn −/− animals, which is compatible with an increased sensitivity to insulin, reinforced by the fact that the insulin content and pancreatic islet morphology of Il1rn −/− animals were normal. In contrast, the administration of IL-1Ra to normal rats for 5days led to a decrease in the whole-body glucose disposal due to a selective decrease in muscle-specific glucose uptake. Conclusions/interpretation: The expression of genes encoding inhibitors of IL-1 signalling is upregulated in the WAT of mice with diet-induced obesity, and IL-1Ra reduces insulin sensitivity in rats through a muscle-specific decrease in glucose uptake. These results suggest that the markedly increased levels of IL-1Ra in human obesity might contribute to the development of insulin resistanc

    Cell cycle phase perturbations and apoptosis in tumour cells induced by aplidine

    Get PDF
    Aplidine, dehydrodidemnin B, is a marine depsipeptide isolated from the Mediterranean tunicate Aplidium albicans currently in phase II clinical trial. In human Molt-4 leukaemia cells Aplidine was found to be cytotoxic at nanomolar concentrations and to induce both a G1 arrest and a G2 blockade. The drug-induced cell cycle perturbations and subsequent cell death do not appear to be related to macromolecular synthesis (protein, RNA, DNA) since the effects occur at concentrations (e.g. 10 nM) in which macromolecule synthesis was not markedly affected. Ten nM Aplidine for 1 h inhibited ornithine decarboxylase activity, with a subsequently strong decrease in putrescine levels. This finding has questionable relevance since addition of putrescine did not significantly reduce the cell cycle perturbations or the cytotoxicity of Aplidine. The cell cycle perturbations caused by Aplidine were also not due to an effect on the cyclin-dependent kinases. Although the mechanism of action of Aplidine is still unclear, the cell cycle phase perturbations and the rapid induction of apoptosis in Molt-4 cells appear to be due to a mechanism different from that of known anticancer drugs

    Phylogenetic Distribution and Evolutionary History of Bacterial DEAD-Box Proteins

    Get PDF
    DEAD-box proteins are found in all domains of life and participate in almost all cellular processes that involve RNA. The presence of DEAD and Helicase_C conserved domains distinguish these proteins. DEAD-box proteins exhibit RNA-dependent ATPase activity in vitro, and several also show RNA helicase activity. In this study, we analyzed the distribution and architecture of DEAD-box proteins among bacterial genomes to gain insight into the evolutionary pathways that have shaped their history. We identified 1,848 unique DEAD-box proteins from 563 bacterial genomes. Bacterial genomes can possess a single copy DEAD-box gene, or up to 12 copies of the gene, such as in Shewanella. The alignment of 1,208 sequences allowed us to perform a robust analysis of the hallmark motifs of DEAD-box proteins and determine the residues that occur at high frequency, some of which were previously overlooked. Bacterial DEAD-box proteins do not generally contain a conserved C-terminal domain, with the exception of some members that possess a DbpA RNA-binding domain (RBD). Phylogenetic analysis showed a separation of DbpA-RBD-containing and DbpA-RBD-lacking sequences and revealed a group of DEAD-box protein genes that expanded mainly in the Proteobacteria. Analysis of DEAD-box proteins from Firmicutes and Îł-Proteobacteria, was used to deduce orthologous relationships of the well-studied DEAD-box proteins from Escherichia coli and Bacillus subtilis. These analyses suggest that DbpA-RBD is an ancestral domain that most likely emerged as a specialized domain of the RNA-dependent ATPases. Moreover, these data revealed numerous events of gene family expansion and reduction following speciation

    A new Late Agenian (MN2a, Early Miocene) fossil assemblage from Wallenried (Molasse Basin, Canton Fribourg, Switzerland)

    Get PDF
    Excavations of two fossiliferous layers in the Wallenried sand- and marl pit produced a very diversified vertebrate fauna. New material allows the reassessment of the taxonomic position of the ruminant taxa Andegameryx andegaviensis and endemic Friburgomeryx wallenriedensis. An emended diagnosis for the second species is provided and additional material of large and small mammals, as well as ectothermic vertebrates, is described. The recorded Lagomorpha show interesting morphological deviations from other Central European material, and probably represent a unique transitional assemblage with a co-occurrence of Titanomys, Lagopsis and Prolagus. Rodentia and Eulipotyphla belong to typical and well-known species of the Agenian of the Swiss Molasse Basin. Abundant small mammal teeth have allowed us to pinpoint the biostratigraphic age of Wallenried to late MN2a. The biostratigraphic age conforms to data derived from the charophyte assemblages and confirms the oldest occurrence of venomous snake fangs. The palaeoenvironmental context is quite complex. Sedimentary structures and fauna (fishes, frogs, salamanders, ostracods) are characteristic for a humid, lacustrine environment within a flood plain system

    Proteomic Analysis of S-Acylated Proteins in Human B Cells Reveals Palmitoylation of the Immune Regulators CD20 and CD23

    Get PDF
    S-palmitoylation is a reversible post-translational modification important for controlling the membrane targeting and function of numerous membrane proteins with diverse roles in signalling, scaffolding, and trafficking. We sought to identify novel palmitoylated proteins in B lymphocytes using acyl-biotin exchange chemistry, coupled with differential analysis by liquid-chromatography tandem mass spectrometry. In total, we identified 57 novel palmitoylated protein candidates from human EBV-transformed lymphoid cells. Two of them, namely CD20 and CD23 (low affinity immunoglobulin epsilon Fc receptor), are immune regulators that are effective/potential therapeutic targets for haematological malignancies, autoimmune diseases and allergic disorders. Palmitoylation of CD20 and CD23 was confirmed by heterologous expression of alanine mutants coupled with bioorthogonal metabolic labeling. This study demonstrates a new subset of palmitoylated proteins in B cells, illustrating the ubiquitous role of protein palmitoylation in immune regulation

    Chemoproteomics reveals Toll-like receptor fatty acylation

    Get PDF
    Partial funding for Open Access provided by The Ohio State University Open Access Fund.Background: Palmitoylation is a 16-carbon lipid post-translational modification that increases protein hydrophobicity. This form of protein fatty acylation is emerging as a critical regulatory modification for multiple aspects of cellular interactions and signaling. Despite recent advances in the development of chemical tools for the rapid identification and visualization of palmitoylated proteins, the palmitoyl proteome has not been fully defined. Here we sought to identify and compare the palmitoylated proteins in murine fibroblasts and dendritic cells. Results: A total of 563 putative palmitoylation substrates were identified, more than 200 of which have not been previously suggested to be palmitoylated in past proteomic studies. Here we validate the palmitoylation of several new proteins including Toll-like receptors (TLRs) 2, 5 and 10, CD80, CD86, and NEDD4. Palmitoylation of TLR2, which was uniquely identified in dendritic cells, was mapped to a transmembrane domain-proximal cysteine. Inhibition of TLR2 S-palmitoylation pharmacologically or by cysteine mutagenesis led to decreased cell surface expression and a decreased inflammatory response to microbial ligands. Conclusions: This work identifies many fatty acylated proteins involved in fundamental cellular processes as well as cell type-specific functions, highlighting the value of examining the palmitoyl proteomes of multiple cell types. Spalmitoylation of TLR2 is a previously unknown immunoregulatory mechanism that represents an entirely novel avenue for modulation of TLR2 inflammatory activity.This work was supported by funding from the NIH/NIAID (grant R00AI095348 to J.S.Y.), the NIH/NIGMS (R01GM087544 to HCH), and the Ohio State University Public Health Preparedness for Infectious Diseases (PHPID) program. NMC is supported by the Ohio State University Systems and Integrative Biology Training Program (NIH/NIGMS grant T32GM068412). BWZ is a fellow of the National Science Foundation Graduate Research Fellowship Program (DGE-0937362)

    De novo TBR1 variants cause a neurocognitive phenotype with ID and autistic traits:report of 25 new individuals and review of the literature

    Get PDF
    TBR1, a T-box transcription factor expressed in the cerebral cortex, regulates the expression of several candidate genes for autism spectrum disorders (ASD). Although TBR1 has been reported as a high-confidence risk gene for ASD and intellectual disability (ID) in functional and clinical reports since 2011, TBR1 has only recently been recorded as a human disease gene in the OMIM database. Currently, the neurodevelopmental disorders and structural brain anomalies associated with TBR1 variants are not well characterized. Through international data sharing, we collected data from 25 unreported individuals and compared them with data from the literature. We evaluated structural brain anomalies in seven individuals by analysis of MRI images, and compared these with anomalies observed in TBR1 mutant mice. The phenotype included ID in all individuals, associated to autistic traits in 76% of them. No recognizable facial phenotype could be identified. MRI analysis revealed a reduction of the anterior commissure and suggested new features including dysplastic hippocampus and subtle neocortical dysgenesis. This report supports the role of TBR1 in ID associated with autistic traits and suggests new structural brain malformations in humans. We hope this work will help geneticists to interpret TBR1 variants and diagnose ASD probands
    • 

    corecore