17 research outputs found

    Comparison of nanoparticular hydroxyapatite pastes of different particle content and size in a novel scapula defect model

    Get PDF
    Nanocrystalline hydroxyapatite (HA) has good biocompatibility and the potential to support bone formation. It represents a promising alternative to autologous bone grafting, which is considered the current gold standard for the treatment of low weight bearing bone defects. The purpose of this study was to compare three bone substitute pastes of different HA content and particle size with autologous bone and empty defects, at two time points (6 and 12 months) in an ovine scapula drillhole model using micro-CT, histology and histomorphometry evaluation. The nHA-LC (38% HA content) paste supported bone formation with a high defect bridging-rate. Compared to nHA-LC, Ostim(®) (35% HA content) showed less and smaller particle agglomerates but also a reduced defect bridging-rate due to its fast degradation The highly concentrated nHA-HC paste (48% HA content) formed oversized particle agglomerates which supported the defect bridging but left little space for bone formation in the defect site. Interestingly, the gold standard treatment of the defect site with autologous bone tissue did not improve bone formation or defect bridging compared to the empty control. We concluded that the material resorption and bone formation was highly impacted by the particle-specific agglomeration behaviour in this study

    Clinical application of scaffolds for cartilage tissue engineering

    Get PDF
    The purpose of this paper is to review the basic science and clinical literature on scaffolds clinically available for the treatment of articular cartilage injuries. The use of tissue-engineered grafts based on scaffolds seems to be as effective as conventional ACI clinically. However, there is limited evidence that scaffold techniques result in homogeneous distribution of cells. Similarly, few studies exist on the maintenance of the chondrocyte phenotype in scaffolds. Both of which would be potential advantages over the first generation ACI. The mean clinical score in all of the clinical literature on scaffold techniques significantly improved compared with preoperative values. More than 80% of patients had an excellent or good outcome. None of the short- or mid-term clinical and histological results of these tissue-engineering techniques with scaffolds were reported to be better than conventional ACI. However, some studies suggest that these methods may reduce surgical time, morbidity, and risks of periosteal hypertrophy and post-operative adhesions. Based on the available literature, we were not able to rank the scaffolds available for clinical use. Firm recommendations on which cartilage repair procedure is to be preferred is currently not known on the basis of these studies. Randomized clinical trials and longer follow-up periods are needed for more widespread information regarding the clinical effectiveness of scaffold-based, tissue-engineered cartilage repair

    Commercial products for osteochondral tissue repair and regeneration

    Get PDF
    The osteochondral tissue represents a complex structure composed of four interconnected structures, namely hyaline cartilage, a thin layer of calcified cartilage, subchondral bone, and cancellous bone. Due to the several difficulties associated with its repair and regeneration, researchers have developed several studies aiming to restore the native tissue, some of which had led to tissue-engineered commercial products. In this sense, this chapter discusses the good manufacturing practices, regulatory medical conditions and challenges on clinical translations that should be fulfilled regarding the safety and efficacy of the new commercialized products. Furthermore, we review the current osteochondral products that are currently being marketed and applied in the clinical setting, emphasizing the advantages and difficulties of each one.FROnTHERA (NORTE-01-0145- FEDER-000023), supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). The authors would also like to acknowledge H2020-MSCA-RISE program, as this work is part of developments carried out in BAMOS project, funded by the European Union’s Horizon 2020 research and innovation program under grant agreement N° 734156. The financial support from the Portuguese Foundation for Science and Technology under the program Investigador FCT 2012 and 2015 (IF/00423/2012 and IF/01285/2015)info:eu-repo/semantics/publishedVersio

    Cell-based tissue engineering strategies used in the clinical repair of articular cartilage

    Full text link
    One of the most important issues facing cartilage tissue engineering is the inability to move technologies into the clinic. Despite the multitude of review articles on the paradigm of biomaterials, signals, and cells, it is reported that 90% of new drugs that advance past animal studies fail clinical trials (1). The intent of this review is to provide readers with an understanding of the scientific details of tissue engineered cartilage products that have demonstrated a certain level of efficacy in humans, so that newer technologies may be developed upon this foundation. Compared to existing treatments, such as microfracture or autologous chondrocyte implantation, a tissue engineered product can potentially provide more consistent clinical results in forming hyaline repair tissue and in filling the entirety of the defect. The various tissue engineering strategies (e.g., cell expansion, scaffold material, media formulations, biomimetic stimuli, etc.) used in forming these products, as collected from published literature, company websites, and relevant patents, are critically discussed. The authors note that many details about these products remain proprietary, not all information is made public, and that advancements to the products are continuously made. Nevertheless, by fully understanding the design and production processes of these emerging technologies, one can gain tremendous insight into how to best use them and also how to design the next generation of tissue engineered cartilage products

    Towards Higher-Precision Maneuver and Gust Loads Computations of Aircraft: Status of Related Features in the CFD-Based Multidisciplinary Simulation Environment FlowSimulator

    No full text
    It is common practice in aircraft industry to perform maneuver and gust loads computations on the basis of potential theory aerodynamics methods that neglect important physical effects. In order to master the future challenges of aviation, however, there is a need for higher-precision loads computations. For this and other purposes, the RANS-CFD-based multidisciplinary simulation environment FlowSimulator is being developed. The status of selected features of the environment related to higher-precision maneuver simulations is presented; example applications are discussed

    Global Aero-Structural Design Optimization of More Flexible Wings for Commercial Aircraft

    No full text
    In the scope of the DLR project VicToria (Virtual Aircraft Technology Integration Platform), an integrated process for aero-structural wing optimization based on high fidelity simulation methods is continuously developed and applied. Based upon a parametric CAD model, flight performance under transonic flight conditions and maneuver loads are computed by solving the Reynolds-averaged Navier--Stokes equations (RANS). Structural mass and elastic characteristics of the wing are determined from structural sizing of the composite wing box for essential maneuver load cases using computational structural mechanics. Static aeroelastic effects are considered in all flight conditions by direct iterative coupling between the flow solver and the structural mechanics solver. Active maneuver load alleviation (MLA) is integrated in the process by a simplified modeling of control surface deflections by using a mesh deformation technique. Landing gear and control surface integration constraints were added compared to previous versions of the optimization process. Global aero-structural wing optimizations are successfully performed for wings with conventional composite wing box structure and for more flexible wings. The latter is accomplished by introducing modifications of the structural concept and the strain allowable. To reduce the CO2 emissions per passenger kilometer, the minimization of the combined fuel consumption for three typical flight missions represents the objective function. Wing optimizations are performed for variable and constant planform parameters as well as with and without consideration of MLA. A significant mass reduction of the optimized wing box is obtained with the more flexible wing concept, resulting in a drop in combined fuel consumption of about 3%. For wing optimizations with MLA the more flexible wing concept shows an additional reduction of the combined fuel consumption in the order of 2%. The more flexible wing concept results in optimized wing geometries with increased aspect ratio and reduced taper ratio

    Dimerization of ERp29, a PDI-like Protein, Is Essential for Its Diverse Functions

    No full text
    Protein disulfide isomerase (PDI)-like proteins act as oxido-reductases and chaperones in the endoplasmic reticulum (ER). How oligomerization of the PDI-like proteins control these activities is unknown. Here we show that dimerization of ERp29, a PDI-like protein, regulates its protein unfolding and escort activities. We have demonstrated previously that ERp29 induces the local unfolding of polyomavirus in the ER, a step required for viral infection. We now find that, in contrast to wild-type ERp29, a mutant ERp29 (D42A) that dimerizes inefficiently is unable to unfold polyomavirus or stimulate infection. A compensatory mutation that partially restores dimerization to the mutant ERp29 (G37D/D42A) rescues ERp29 activity. These results indicate that dimerization of ERp29 is crucial for its protein unfolding function. ERp29 was also suggested to act as an escort factor by binding to the secretory protein thyroglobulin (Tg) in the ER, thereby facilitating its secretion. We show that this escort function likewise depends on ERp29 dimerization. Thus our data demonstrate that dimerization of a PDI-like protein acts to regulate its diverse ER activities
    corecore