4,866 research outputs found

    MOST observations of the roAp stars HD 9289, HD 99563, and HD 134214

    Get PDF
    We report on the analysis of high-precision space-based photometry of the roAp (rapidly oscillating Ap) stars HD 9289, HD 99563, and HD134214. All three stars were observed by the MOST satellite for more than 25 days, allowing unprecedented views of their pulsation. We find previously unknown candidate frequencies in all three stars. We establish the rotation period of HD 9289 (8.5 d) for the first time and show that the star is pulsating in two modes that show different mode geometries. We present a detailed analysis of HD 99563's mode multiplet and find a new candidate frequency which appears independent of the previously known mode. Finally, we report on 11 detected pulsation frequencies in HD 134214, 9 of which were never before detected in photometry, and 3 of which are completely new detections. Thanks to the unprecedentedly small frequency uncertainties, the p-mode spectrum of HD 134214 can be seen to have a well-defined large frequency spacing similar to the well-studied roAp star HD 24712 (HR 1217).Comment: 11 pages, 12 figures, accepted for publication in A&

    Sky camera geometric calibration using solar observations

    Get PDF
    A camera model and associated automated calibration procedure for stationary daytime sky imaging cameras is presented. The specific modeling and calibration needs are motivated by remotely deployed cameras used to forecast solar power production where cameras point skyward and use 180° fisheye lenses. Sun position in the sky and on the image plane provides a simple and automated approach to calibration; special equipment or calibration patterns are not required. Sun position in the sky is modeled using a solar position algorithm (requiring latitude, longitude, altitude and time as inputs). Sun position on the image plane is detected using a simple image processing algorithm. The performance evaluation focuses on the calibration of a camera employing a fisheye lens with an equisolid angle projection, but the camera model is general enough to treat most fixed focal length, central, dioptric camera systems with a photo objective lens. Calibration errors scale with the noise level of the sun position measurement in the image plane, but the calibration is robust across a large range of noise in the sun position. Calibration performance on clear days ranged from 0.94 to 1.24 pixels root mean square error

    Triggered massive-star formation on the borders of Galactic HII regions. III. Star formation at the periphery of Sh2-219

    Get PDF
    Context. Massive-star formation triggered by the expansion of HII regions. Aims. To understand if sequential star formation is taking place at the periphery of the HII region Sh2-219. Methods. We present 12CO(2-1) line observations of this region, obtained at the IRAM 30-m telescope (Pico Veleta, Spain). Results. In the optical, Sh2-219 is spherically symmetric around its exciting star; furthermore it is surrounded along three quarters of its periphery by a ring of atomic hydrogen. This spherical symmetry breaks down at infrared and millimetre wavelengths. A molecular cloud of about 2000\msol lies at the southwestern border of Sh2-219, in the HI gap. Two molecular condensations, elongated along the ionization front, probably result from the interaction between the expanding HII region and the molecular cloud. In this region of interaction there lies a cluster containing many highly reddened stars, as well as a massive star exciting an ultracompact HII region. More surprisingly, the brightest parts of the molecular cloud form a `chimney', perpendicular to the ionization front. This chimney is closed at its south-west extremity by H-alpha walls, thus forming a cavity. The whole structure is 7.5 pc long. A luminous H-alpha emission-line star, lying at one end of the chimney near the ionization front, may be responsible for this structure. Confrontation of the observations with models of HII region evolution shows that Sh2-219 is probably 10^5 yr old. The age and origin of the near-IR cluster observed on the border of Sh2-219 remain unknown.Comment: 11 pages, 10 figures. To be published in A&

    A Tight Upper Limit on Oscillations in the Ap star Epsilon Ursae Majoris from WIRE Photometry

    Full text link
    Observations of Epsilon UMa obtained with the star tracker on the Wide Field Infrared Explorer (WIRE) satellite during a month in mid-2000 are analyzed. This is one of the most precise photometry of an Ap star. The amplitude spectrum is used to set an upper limit of 75 parts per million for the amplitude of stellar pulsations in this star unless it accidentally oscillates with a single mode at the satellite orbit, its harmonics or their one day aliases. This is the tightest limit put on the amplitude of oscillations in an Ap star. As the rotation period of Epsilon UMa is relatively short (5.1 d), it cannot be argued that the observations were made at a wrong rotational phase. Our results thus support the idea that some Ap stars do not pulsate at all.Comment: 4 pages, 4 figures, 2 style files, accepted for publication in ApJ

    CVcat: an interactive database on cataclysmic variables

    Full text link
    CVcat is a database that contains published data on cataclysmic variables and related objects. Unlike in the existing online sources, the users are allowed to add data to the catalogue. The concept of an ``open catalogue'' approach is reviewed together with the experience from one year of public usage of CVcat. New concepts to be included in the upcoming AstroCat framework and the next CVcat implementation are presented. CVcat can be found at http://www.cvcat.org.Comment: 5 pages A&A Latex, 4 figures, accepted for publication in A&

    Walnut agroforestry (1996)

    Get PDF
    Agroforestry, or growing trees and other crops together on the same land, has been practiced for years in other countries to achieve more sustainable and productive use of limited land resources. In the U.S., forestry and agriculture historically have been considered mutually exclusive land use alternatives. But with clear management objectives, careful planning and skillful intensive management, combining crops and trees can provide advantages that outweigh any perceived disadvantages. Agroforestry is a potential alternative to conventional mechanical methods for soil erosion control. It also allows for gradual removal of highly erodible cropland from row-crop production.New 1/92, Reprinted 5/96/5

    Economics of agroforestry (1996)

    Get PDF
    Agroforestry provides a landowner the opportunity to develop a portfolio of short- and long-term investments that allow for some spreading of financial risk through diversification. In general, diversification of investment provides financial advantages, although it also introduces the need for additional management expertise to deal with the added complexity of the farm operation. For farms with land particularly unsuitable for crops, agroforestry provides a way to remove the unsuitable land from crop production over an extended period as the trees mature. Agroforestry also provides social benefits by functioning as a protective system that ensures resource conservation, although some of these benefits are not directly measurable.New 5/96/5M

    Radiation hardness of Ga0.5In0.5 P/GaAs tandem solar cells

    Get PDF
    The radiation hardness of a two-junction monolithic Ga sub 0.5 In sub 0.5 P/GaAs cell with tunnel junction interconnect was investigated. Related single junction cells were also studied to identify the origins of the radiation losses. The optimal design of the cell is discussed. The air mass efficiency of an optimized tandem cell after irradiation with 10(exp 15) cm (-2) 1 MeV electrons is estimated to be 20 percent using currently available technology

    Discovery of unusual pulsations in the cool, evolved Am stars HD 98851 and HD 102480

    Full text link
    The chemically peculiar (CP) stars HD 98851 and HD 102480 have been discovered to be unusual pulsators during the ``Naini Tal Cape Survey'' programme to search for pulsational variability in CP stars. Time series photometric and spectroscopic observations of these newly discovered stars are reported here. Fourier analyses of the time series photometry reveal that HD 98851 is pulsating mainly with frequencies 0.208 mHz and 0.103 mHz, and HD 102480 is pulsating with frequencies 0.107 mHz, 0.156 mHz and 0.198 mHz. The frequency identifications are all subject to 1 d−1^{-1} cycle count ambiguities. We have matched the observed low resolution spectra of HD 98851 and HD 102480 in the range 3500-7400 \AA with theoretical synthetic spectra using Kurucz models with solar metallicity and a micro-turbulent velocity 2 km s−1^{-1}. These yield Teff=7000±250T_{eff}=7000\pm250 K, log g=3.5±0.5g=3.5 \pm 0.5 for HD 98851 and Teff=6750±250T_{eff} = 6750 \pm 250 K, log g=3.0±0.5g = 3.0 \pm 0.5 for HD 102480. We determined the equivalent H-line spectral class of these stars to be F1 IV and F3 III/IV, respectively. A comparison of the location of HD 98851 and HD 102480 in the HR diagram with theoretical stellar evolutionary tracks indicates that both stars are about 1-Gyr-old, 2-M⊙M_{\odot} stars that lie towards the red edge of the ÎŽ\delta Sct instability strip. We conclude that HD 98851 and HD 102480 are cool, evolved Am pulsators. The light curves of these pulsating stars have alternating high and low amplitudes, nearly harmonic (or sub-harmonic) period ratios, high pulsational overtones and Am spectral types. This is unusual for both Am and ÎŽ\delta Sct pulsators, making these stars interesting objects.Comment: 9 pages, 6 Figures, Accepted for publication in MNRA
    • 

    corecore