28,897 research outputs found

    Quantitative NME microscopy of iron transport in methanogenic aggregates

    Get PDF
    Transport of micronutrients (iron, cobalt, nickel, etc.) within biofilms matrixes such as methanogenic granules is of high importance, because these are either essential or toxic for the microorganisms living inside the biofilm. The present study demonstrates quantitative measurements of metal transport inside these biofilms using T1 weighted 3D RARE. It is shown that iron(II)-EDTA diffusion within the granule is independent of direction or the inner structure of the granules. Assuming position dependence of the spin-lattice relaxivity, Fick’s law for diffusion in a sphere can be applied to simulate the diffusion within the methanogenic granules under investigation. A relatively low diffusion coefficient of 2.5*10-11 m2·s-1 was obtained for iron diffusion within the methanogenic granul

    Is the golden hour optimally used in South Africa for children presenting with polytrauma?

    Get PDF
    BACKGROUND: The major paediatric public health problem worldwide is injury or trauma. In 2004, 950 000 children died as a result of injury. OBJECTIVE: The aim of this study was to evaluate the logistics of medical care after paediatric polytrauma within the first hours after arrival into a trauma unit - the so-called Golden Hour. METHODS: Children presenting with polytrauma to the Trauma Unit at the Red Cross War Memorial Children's Hospital between May 2011 and August 2011 were considered for inclusion in the study. RESULTS: Fifty-five children were included in the final analysis. The median duration of stay in the Trauma Unit was 205 minutes (interquartile range 135 - 274). CONCLUSION: Several factors were identified that unnecessarily prolonged the time that patients stayed in the trauma unit following arrival in hospital for polytrauma management

    Energy metabolism in human pluripotent stem cells and their differentiated counterparts

    Get PDF
    Background: Human pluripotent stem cells have the ability to generate all cell types present in the adult organism, therefore harboring great potential for the in vitro study of differentiation and for the development of cell-based therapies. Nonetheless their use may prove challenging as incomplete differentiation of these cells might lead to tumoregenicity. Interestingly, many cancer types have been reported to display metabolic modifications with features that might be similar to stem cells. Understanding the metabolic properties of human pluripotent stem cells when compared to their differentiated counterparts can thus be of crucial importance. Furthermore recent data has stressed distinct features of different human pluripotent cells lines, namely when comparing embryo-derived human embryonic stem cells (hESCs) and induced pluripotent stem cells (IPSCs) reprogrammed from somatic cells. Methodology/Principal Findings: We compared the energy metabolism of hESCs, IPSCs, and their somatic counterparts. Focusing on mitochondria, we tracked organelle localization and morphology. Furthermore we performed gene expression analysis of several pathways related to the glucose metabolism, including glycolysis, the pentose phosphate pathway and the tricarboxylic acid (TCA) cycle. In addition we determined oxygen consumption rates (OCR) using a metabolic extracellular flux analyzer, as well as total intracellular ATP levels by high performance liquid chromatography (HPLC). Finally we explored the expression of key proteins involved in the regulation of glucose metabolism. Conclusions/Findings: Our results demonstrate that, although the metabolic signature of IPSCs is not identical to that of hESCs, nonetheless they cluster with hESCs rather than with their somatic counterparts. ATP levels, lactate production and OCR revealed that human pluripotent cells rely mostly on glycolysis to meet their energy demands. Furthermore, our work points to some of the strategies which human pluripotent stem cells may use to maintain high glycolytic rates, such as high levels of hexokinase II and inactive pyruvate dehydrogenase (PDH). © 2011 Varum et al

    From the pursuit of excellence to the quest for significance: Promotion of a Childsafe South Africa

    Get PDF
    Trauma represents a major burden of disease in South Africa. Children are disproportionately affected by trauma; rightly, childhood trauma can be referred to as ‘the neglected childhood killer disease’. Unlike the field of infectious diseases, where vaccinations and prevention are the norm, paediatric trauma is usually ignored and prevention strategies are scarce. In this article, we review paediatric trauma and its effect on our society in light of the development of more effective child safety promotion strategies

    Irreducible Highest Weight Representations Of The Simple n-Lie Algebra

    Full text link
    A. Dzhumadil'daev classified all irreducible finite dimensional representations of the simple n-Lie algebra. Using a slightly different approach, we obtain in this paper a complete classification of all irreducible, highest weight modules, including the infinite-dimensional ones. As a corollary we find all primitive ideals of the universal enveloping algebra of this simple n-Lie algebra.Comment: 24 pages, 24 figures, mistake in proposition 2.1 correcte

    Fluctuations of a Greenlandic tidewater glacier driven by changes in atmospheric forcing : observations and modelling of Kangiata Nunaata Sermia, 1859–present

    Get PDF
    Acknowledgements. The authors wish to thank Stephen Price, Mauri Pelto, and the anonymous reviewer for their reviews and comments that helped to improve the manuscript. RACMO2.1 data were provided by Jan van Angelen and Michiel van den Broeke, IMAU, Utrecht University. MAR v3.2 data used for runoff calculations were provided by Xavier Fettweis, Department of Geography, University of Liège. The photogrammetric DEM used in Figs. 1 and 3 was provided by Kurt H. Kjær, Centre for GeoGenetics, University of Copenhagen. This research was financially supported by J. M. Lea’s PhD funding, NERC grant number NE/I528742/1. Support for F. M. Nick was provided through the Conoco-Phillips/Lundin Northern Area Program CRIOS project (Calving Rates and Impact on Sea Level).Peer reviewedPublisher PD

    DIRECT METAL LASER SINTERING, USING CONFORMAL COOLING, FOR HIGH VOLUME PRODUCTION TOOLING#

    Get PDF
    Published ArticleExisting techniques to manufacture conventional tool steel inserts for the plastic injection moulding process are expensive and time-consuming. Complex mould inserts, difficult to manufacture with conventional processes, can be produced using Direct Metal Laser Sintering (DMLS) with Maraging tool steel (MS1). MS1 is an additive manufacturing (AM) material made available by Electro Optical Systems (EOS) GmbH. Contrary to material removal processes, DMLS can produce MS1 tool steel inserts directly from Computer-Aided Design (CAD) files suitable for high volume plastic injection moulding. Through DMLS it is possible to create conformal cooling channels inside the MS1 inserts that have advantages in reducing heat rapidly and evenly. This can result in a reduction of cycle times, cost per product as well as improving part quality by eliminating defects such as warpage and heat sinks. This paper will present a comparison between Finite Element Analysis (FEA) simulations of the injection mould inserts with actual mould trails of AM and conventional manufactured inserts. It also includes the design and manufacturing of conventional and DMLS inserts and compares the manufacturing costs and lead times. Using FEA simulations, the design of conformal cooling channels is optimised by comparing the mould temperature of different cooling channel layouts. Bestaande tegnieke vir die vervaardiging van matryse vir die plastiek-inspuit giet tegniek is duur en tyd rowend. Verder is dit nie altyd moontlik om konvensionele metodes vir die vervaardiging van matryse vir geomteries komplekse gietstukke te gebruik nie. Vir sodanige gietsukke kan invoegsels relatief vinnig vervaardig word, deur van direkte laser metal sinterings metodes (DLMS) met Maraging-staal (MS1) gebruik te maak. MS1 is ’n laag vervaardings materiaal wat onlangs deur Electro Optical Systems (EOS) GmbH beskikbaar gestel is. Dit is ’n pre-allooi, ultra hoë sterkte metaal met goeie meganiese eienskappe. In teenstelling met materiaal verwyderings prosesse (masjienerings prosesse), kan DMLS MS1 staal matryse of insetsels wat vir hoë volume produksie van plastiek gietsukke bruikbaar is, direk vanaf rekenaar-gesteunde ontwerp prosesse vervaardig word. Die gebruik van DMLS kan ook vir die ontwerp en vervaardiging van vorm getroue verkoelings kanale in matryse voorsiening maak, wat tot laer hitte asook die vinnige en eweredige verspreiding daarvan sal lei. Voorgenoemde behoort tot ’n aansienlike verlaging in produksie siklus tye te lei met ’n dien ooreenkomstige verlaging in die produksie koste asook ’n verbetering in die kwaliteit van die vervaardigde produkte a.g.v. die voorkoming van defekte soos kromtrekking en hitte-putte wat normaalweg deur oneweredige hitte verspreiding veroorsaak word
    corecore